This is the caller code. You can call it 'KS_monotonic_caller.m'. Copy the below script and paste the code in and save it in an appropriate directory.
- % KS_MONOTONIC_CALLER will solve the K-S equation for the case of the
- % monotonic shock conditions
- % -------------------------------------------------------------------
- %
- % Written 19 Mar 2021 for the INI Spring School
- % EXPONENTIAL ASYMPTOTICS FOR PHYSICAL APPLICATIONS
- clear
- ep = 0.05; % Set epsilon value
- zmin = -25; zmax = 12; % Set domain
- % Define the initial condition at infinity
- A = 2;
- ubc = @(z) 1 - A*exp(-2*z);
- upbc = @(z) -2*(-A)*exp(-2*z);
- uppbc = @(z) 4*(-A)*exp(-2*z);
- ic = [ubc(zmax); upbc(zmax); uppbc(zmax)];
- % Define the differential equation
- fwd = @(t,Y) KSode(t,Y,ep);
- % Solve the ODE from z = zmax going backwards to z = zmin
- options = odeset('RelTol', 1e-9, 'AbsTol', 1e-9);
- [z, Y] = ode45(fwd, [zmax, zmin], ic, options);
- u = Y(:,1);
- figure(1)
- hold all
- plot(z, u);
- plot(z, tanh(z), 'k--');
- xlabel('z'); ylabel('u(z)');
- ylim([-5,5]);
- title('Monotonic shock solution (u0 = tanh(z) shown dashed)');
- drawnow
The caller code will require 'KSode.m'. Save it and run it from the same directory. Make sure you name it with the correct upper and lower-case characters.
- function Yp = KSode(z, Y, ep)
- % KSODE provides the first-order differential equation definition for
- % ep^2 u''' + (1 - 4 ep^2) u' = 1 - u^2
- u = Y(1);
- up = Y(2);
- upp = Y(3);
- uppp = (1 - u^2 - (1 - 4*ep^2)*up)/ep^2;
- Yp = [up; upp; uppp];
Again, you can copy and paste the below script into a Matlab file and call it, e.g. 'KS_osc_caller.m'. It will make use of the 'KSode.m' code above.
- % KS_OSC_CALLER will solve the K-S equation for the case of the
- % oscillatory shock conditions
- % -------------------------------------------------------------------
- %
- % Written 19 Mar 2021 for the INI Spring School
- % EXPONENTIAL ASYMPTOTICS FOR PHYSICAL APPLICATIONS
- z0 = 1.24;
- phi = 2.60586555;
- % phi = 2.59;
- % phi = 2.5;
- ep = 0.05;
- zmin = -6;
- zmax = 12;
- gam = sqrt(1/ep^2 - 1);
- bc = @(z) -1 + exp(-(z-z0))*sin(gam*(z-z0)+phi);
- bcp = @(z) -exp(-(z-z0))*sin(gam*(z-z0)+phi) + ...
- gam*exp(-(z-z0))*cos(gam*(z-z0)+phi);
- bcpp = @(z) exp(-(z-z0))*sin(gam*(z-z0)+phi) ...
- - 2*gam*exp(-(z-z0))*cos(gam*(z-z0)+phi) ...
- -gam^2*exp(-(z-z0))*sin(gam*(z-z0)+phi);
- ic = [bc(zmax); ...
- bcp(zmax); ...
- bcpp(zmax)];
- fwd = @(t,Y) KSode(t,Y,ep);
- mytol = 1e-10;
- options = odeset('RelTol', mytol, 'AbsTol', mytol);
- sol = ode113(fwd, [zmax, zmin], ic, options);
- figure(1)
- hold all
- plot(sol.x, sol.y(1,:));
- ylim([-5,5]);
- drawnow