At the start of the lecture, we continue deriving the Fourier coefficients for the problem of zero Dirichlet conditions on the wave equation. We show that
$$ u(x, t) = \sum_{n=0}^\infty \sin\left(\frac{n\pi x}{L}\right) \left[ A_n \cos\left(\frac{n\pi ct}{L}\right) + B_n \sin\left(\frac{n\pi ct}{L}\right)\right] $$
where $$ A_n = \frac{2}{L} \int_0^L u_0(x) \sin\left(\frac{n\pi x}{L}\right) \ \mathrm{d}{x}. $$
and Again we recognise this as the sine series, so we now need to equate $$ B_n = \frac{2}{L} \left(\frac{L}{n\pi c}\right)\int_0^L v_0(x) \sin\left(\frac{n\pi x}{L}\right) \ \mathrm{d}{x}. $$
The next thing we did was look at the solution for the plucked string of example 16.4 in the notes. This yields the above Fourier series solution with $B_n = 0$ and $$ A_n = \frac{4}{n^2\pi} \sin(n\pi/2). $$
We showed off the simulations of the problem using the following code.
Plucked string
% MA20223 Plucked String clear close all % c = 1 x = linspace(0, pi, 100); t = linspace(0, 2*(2*pi), 80); Afunc = @(k) 4*(-1)^k/((2*k+1)^2*pi); un = @(x, t, k) Afunc(k)*sin((2*k+1)*x).*cos((2*k+1)*t); Nk = 80; figure(1) for j = 1:length(t) tt = t(j); u = 0; for k = 0:Nk u = u + un(x,tt,k); end plot(x, u); ylim([-pi/2, pi/2]); drawnow if j == 1 pause; else pause(0.1) end end