Trinh @ Bath

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
vpde_lecture25 [2020/03/31 08:25]
trinh
vpde_lecture25 [2020/04/04 21:05]
trinh
Line 2: Line 2:
  
 This lecture will do apply separation of variables and Fourier series in order to solve for the wave equation on a finite interval.  This lecture will do apply separation of variables and Fourier series in order to solve for the wave equation on a finite interval. 
 +
 +<html>
 +<iframe width="560" height="315" src="https://www.youtube.com/embed/VMz3R6d2ZZ8" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
 +</html>
  
 ===== Definition 16.1 (1D wave equation with homogeneous Dirichlet BCs ===== ===== Definition 16.1 (1D wave equation with homogeneous Dirichlet BCs =====
Line 35: Line 39:
 ===== Example 16.2 (Imagining the modes) ===== ===== Example 16.2 (Imagining the modes) =====
  
-I want to help you imagine what the modes, $u_n$, look like. For simplicity, take the length $L = \pi$. Also, we may take $c = 1$. +I want to help you imagine what the modes, $u_n$, look like. For simplicity, take the length $L = \pi$. Also, we may take $c = 1$. The individual modes we want to examine are:  
 +$$ 
 +u_n(x, t) = \sin\left(nx\right) \left[ A_n \cos(nct) + B_n \sin(nct)\right] 
 +$$ 
 + 
 +<Code:Matlab linenums:1 |Demonstration of the modes> 
 +% Code for MA20223 30 Mar 2020 
 +clear 
 +close all 
 + 
 +% Length and time 
 +L = pi; T = 2*pi/(c*n); 
 + 
 +% Function 
 +n = 2; c = 1; 
 +un = @(x,t) sin(n*x/L).*cos(n*c*t/L); 
 + 
 +% Make vectors for space and time 
 +x = linspace(0, pi, 50); t = linspace(0, 2*T, 50); 
 + 
 +% Create a mesh of x vs. t 
 +[X,T] = meshgrid(x,t); 
 + 
 +% Matrix of U values to imagine the surface 
 +U = sin(n*X).*cos(n*T); 
 + 
 +figure(1); subplot(1,2,1); xlabel('x'); ylabel('u'); 
 + 
 +subplot(1,2,2); 
 +% Plot the surface and make it pretty 
 +s = surf(X,T,U); set(s, 'EdgeColor', 'none', 'FaceColor', 'interp'); 
 +view([-48, 17]); xlabel('x'); ylabel('t'); zlabel('u'); 
 +hold on 
 + 
 +% Plot an animation in time 
 +for j = 1:length(t)     
 +    tt = t(j); uu = un(x,tt); 
 +     
 +    subplot(1,2,1); 
 +    plot(x, uu);   title(['t = ', num2str(tt)]); 
 +    ylim([-1,1]); xlim([0, pi]); 
 +     
 +    subplot(1,2,2); 
 +    if j == 1 
 +        p = plot3(x, tt*ones(size(x)), un(x, t(j)), 'LineWidth', 3); 
 +        pause; 
 +    else 
 +        set(p, 'XData', x, 'YData', tt*ones(size(x)), 'ZData', un(x,t(j))); 
 +    end 
 +     
 +    drawnow 
 +    shg 
 +end 
 +</Code> 
 + 
 +==== Implementation of the Fourier series ==== 
 + 
 +Now we need to look to solve for the coefficients of our series by applying the boundary conditions. We have that  
 +$$ 
 +u(x, t) = \sum_{n=0}^\infty \sin\left(\frac{n\pi x}{L}\right) \left[ A_n \cos\left(\frac{n\pi ct}{L}\right) + B_n \sin\left(\frac{n\pi ct}{L}\right)\right] 
 +$$ 
 + 
 +Imposing the initial displacement, we have  
 +$$ 
 +u_0(x) = \sum_{n=0}^\infty A_n \sin\left(\frac{n\pi x}{L}\right),  
 +$$ 
 + 
 +which we recognise as the sine series for the odd $2L$-periodic extension of the function $u_0(x)$ originally defined on $[0, L]$. So the coefficients are (see theorem 12.7) 
 +$$ 
 +A_n = \frac{2}{L} \int_0^L u_0(x) \sin\left(\frac{n\pi x}{L}\right).  
 +$$ 
 + 
 +Imposing the initial velocity, we have 
 +$$ 
 +v_0(x) = \sum_{n=1}^\infty \left(\frac{n\pi c}{L}\right)B_n \sin\left(\frac{n\pi x}{L}\right) 
 +$$ 
 + 
 +Again we recognise this as the sine series, so we now need to equate 
 +$$ 
 +\left(\frac{n\pi c}{L}\right)B_n = \frac{2}{L} \int_0^L v_0(x) \sin\left(\frac{n\pi x}{L}\right).  
 +$$