Trinh @ Bath

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
vpde_lecture25 [2020/03/31 08:49]
trinh
vpde_lecture25 [2020/04/04 21:33] (current)
trinh
Line 2: Line 2:
  
 This lecture will do apply separation of variables and Fourier series in order to solve for the wave equation on a finite interval.  This lecture will do apply separation of variables and Fourier series in order to solve for the wave equation on a finite interval. 
 +
 +<html>
 +<iframe width="560" height="315" src="https://www.youtube.com/embed/VMz3R6d2ZZ8" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
 +</html>
  
 ===== Definition 16.1 (1D wave equation with homogeneous Dirichlet BCs ===== ===== Definition 16.1 (1D wave equation with homogeneous Dirichlet BCs =====
Line 89: Line 93:
 end end
 </Code> </Code>
 +
 +==== Implementation of the Fourier series ====
 +
 +Now we need to look to solve for the coefficients of our series by applying the boundary conditions. We have that 
 +$$
 +u(x, t) = \sum_{n=0}^\infty \sin\left(\frac{n\pi x}{L}\right) \left[ A_n \cos\left(\frac{n\pi ct}{L}\right) + B_n \sin\left(\frac{n\pi ct}{L}\right)\right]
 +$$
 +
 +Imposing the initial displacement, we have 
 +$$
 +u_0(x) = \sum_{n=0}^\infty A_n \sin\left(\frac{n\pi x}{L}\right), 
 +$$
 +
 +which we recognise as the sine series for the odd $2L$-periodic extension of the function $u_0(x)$ originally defined on $[0, L]$. So the coefficients are (see theorem 12.7)
 +$$
 +A_n = \frac{2}{L} \int_0^L u_0(x) \sin\left(\frac{n\pi x}{L}\right). 
 +$$
 +
 +Imposing the initial velocity, we have
 +$$
 +v_0(x) = \sum_{n=1}^\infty \left(\frac{n\pi c}{L}\right)B_n \sin\left(\frac{n\pi x}{L}\right)
 +$$
 +
 +Again we recognise this as the sine series, so we now need to equate
 +$$
 +\left(\frac{n\pi c}{L}\right)B_n = \frac{2}{L} \int_0^L v_0(x) \sin\left(\frac{n\pi x}{L}\right). 
 +$$
 +
 +//(The video gets very close to the end of this; we managed to get the $A_n$ coefficients and need to address the $B_n$ coefficients in lecture 26)//