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History: see original paper in Saffman and TaylorSaffman and Taylor [19581958] and even-
tual resolution Combescot et al.Combescot et al. [19861986, 19881988], Combescot and DombreCombescot and Dombre
[19881988], Hong and LangerHong and Langer [19861986, 19871987]. More modern treatments using
exponential asymptotics in TanveerTanveer [19901990], ChapmanChapman [19991999].

13.1 the saffman-taylor problem

We first describe the experiment and findings in the original paper
by Saffman and TaylorSaffman and Taylor [19581958]. A Hele-Shaw cell is constructed using
two pieces of glass separated by a thin gap filled with viscous fluid
(glycerine). A pressure gradient is produced by applying air pressure
or suction above the fluid in one end of the apparatus, while the other
end is maintained at atmospheric pressure. This apparatus appears in
fig. 13.113.1.

Figure 13.1: Sketch of a
Hele-Shaw cell. Figure from
Saffman and TaylorSaffman and Taylor [19581958].

When the pressure gradient is applied, the air-liquid interface is
observed to destabilise in a process known as viscous fingering. Here,
the initial, nearly straight interface develops oscillatory instabilities that
eventually grow into longer ‘fingers’ of bubbles, as shown in fig. 13.213.2.
The experiment can be repeated by injecting a less viscous fluid into a
more viscous fluid and the instability also appears.

Figure 13.2: Sketch of
a Hele-Shaw cell (from
Saffman and TaylorSaffman and Taylor 19581958)

Saffman and TaylorSaffman and Taylor [19581958] argued that one could model the situ-
ation by considering the case of an infinite set of equal and equally
spaced fingers all advancing at the same speed. Since each finger is then
separated with its neighbour by a streamline, one is led to consider the
simplest scenario of single finger propagating, in a Hele-Shaw channel
of fixed width.

Let us explain the connection with exponential asymptotics. The
non-dimensional parameter that appears in the mathematical model is
the inverse-capillary number

ϵ2 ∝ σ

µU(1− λ)2
, (13.1)
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where µ is the dynamic viscosity of the liquid, U is the speed of the
travelling finger, σ is the surface tension, and 0 < λ < 1 is the proportion
of the (transverse) channel width that is occupied by the finger.

Through a procedure of conformal mapping and seeking the limit of
ϵ→ 0, Saffman and Taylor demonstrated that a leading-order approxi-
mation could be developed for the finger profile [their eqn (17)],

x ∼ 1− λ

π
log

[
1

2

(
1 + cos

πy

λ

)]
, (13.2)

for a bubble propagating in the positive x direction with the tip of the
bubble at (x, y) = (0, 0). Note that the approximation yields a finger
profile for different widths λ. Figure 13.313.3 demonstrates the remarkable
fit between experiment and their asymptotic approximation.

Figure 13.3: Fit between
theory and experiment
(from figure 9, plate 2 of
Saffman and TaylorSaffman and Taylor 19581958)

However, Saffman and Taylor crucially remarked that [p. 327]

“The most interesting feature of the results exhibited. . . is
that in all cases the value of λ rapidly decreases as [the
Capillary number] increases till it reaches a value which is
very close to 1

2 . . .We have found no theoretical reason for
this deduction.”

Thus the asymptotic approximation (13.213.2) seems to yield no restriction
on the permissible values of λ in the limit ϵ→ 0 and a one-parameter
family of solutions is predicted—in seeming contradiction with the
experimental results.

The selection mechanism that determines the permissible values of
ϵ will turn out to be an exponential asymptotics problem.

13.2 mathematical formulation

This formulation follows McLean and SaffmanMcLean and Saffman [19811981], Vanden-BroeckVanden-Broeck
[20102010], ChapmanChapman [19991999]. Consider a Hele-Shaw cell composed of a long
and thin rectilinear channel of dimensional width 2a and height b, where
b≪ a. The cell is filled with an incompressible fluid of viscosity µ that
is pushed by a non-miscible second fluid of negligible viscosity. Gravity
is ignored. We suppose that a travelling wave has formed in which a
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single finger of the inviscid fluid with width 2λa as x→ −∞ propogates
at velocity U .

A derivation of the governing mathematical model is presented in
??, and here we present only the key details. The system is firstly non-
dimensionalised: the lengths are non-dimensionalised with a, velocity
with (1−λ)U , and pressure with 12µa(1−λ)U/b2. Once this is done, a
velocity potential ϕ is introduced for the coordinate frame moving with
the finger. The task is to solve Laplace’s equation, ∇2ϕ = 0, within
the viscous fluid subject to kinematic conditions on all solid and free
boundaries. In addition, on the free surface, we impose the dynamic
condition,

ϕ = ϕ0 + Cκ− x

1− λ
,

where ϕ0 is the constant value of the potential in the inviscid region, κ
is the non-dimensional curvature of the interface, and

C =
σb2

12µa2U(1− λ)
,

is the inverse Capillary number. Finally, for the viscous fluid outside of
the bubble, we require the two far-field conditions of

ϕx ∼ −1/(1− λ) as x→ −∞, λ < |y| < 1,

ϕx ∼ −1 as x→ +∞, −1 < y < 1,

which imposes, respectively, the fluid speeds far behind and far ahead
of the finger tip.

The problem is now reformulated with the help of complex-variable
theory. First, a series of conformal maps are applied that transforms
the physical flow domain into a simpler domain. And second, Cauchy’s
theorem is applied in order to repose the problem as a one-dimensional
boundary integral formulation. This essentially side-steps the issue of
having to solve Laplace’s equation in a fully two-dimensional region
with unknown boundaries.

Consider a point, z = x+ iy, on the interface, as shown in fig. 13.413.4.
We let w = ϕ+ iψ be the complex potential. The fluid region in the
z-plane is now mapped to a strip region in the w-plane. We further set

s = e−(w−ϕ0)π, (13.3)

which maps the fluid region to the upper-half s-plane, where the interface
AB is mapped to the real segment 0 < s < 1 with s = 1 corresponding
to the finger tip. The s-plane is shown in fig. 13.513.5.

Let q̂ and θ̂ be respectively the non-dimensional speed and angle
of the interface, measured relative to the positive x-axis. Then, the
complex velocity can be written as

u− iv = q̂e−iθ̂.

Next, we shift the angle and scale the speed using

θ = θ̂ − π, q = (1− λ)q̂,
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Figure 13.4: Configuration in
the z-plane.

(top) half finger
(bottom) half finger B

symmetry axis Re(s)
C

Im(s)

D
wall

EA

Figure 13.5: Configuration in
the s-plane. Note that the fin-
ger has been mapped to the
region 0 < s < 1.

which will have the effect of simplifying the governing equations and
moving the only appearance of the finger width, λ, to a single combined
parameter.

It can then be shown that solving the steady viscous fingering
problem is equivalent to obtaining functions, q = q(s) and θ = θ(s),
such that

log q = − s

π
−
∫ 1

0

θ(s′)
s′(s′ − s)

ds′ (13.4a)

ϵ2qs
d

ds

(
qs

dθ

ds

)
− q = − cos θ (13.4b)

θ(0) = 0, q(0) = 1 (13.4c)

θ(1) = −π
2
, q(1) = 0, (13.4d)

which is to be solved on the strip 0 ≤ s ≤ 1. The above system is the
McLean and SaffmanMcLean and Saffman [19811981] formulation. See also eqns (2.15)–(2.19)
from ChapmanChapman [19991999]. The small parameter that has been introduced
is the dimensionless surface tension,

ϵ2 =
Cπ2

1− λ
=

σb2π2

12µUa2(1− λ)2
. (13.5)

Once the system (13.413.4) has been solved, we can retrieve the shape
of the finger by computingSee Vanden-BroeckVanden-Broeck [20102010] eqn

(3.270).

x(s) + iy(s) = −1− λ

π

∫ 1

s

eiθ(s
′)

s′q(s′)
ds′, (13.6)

and furthermore the width can be calculated from

log(1− λ) =
1

π
−
∫ 1

0

θ(s′)
s′

ds′. (13.7)
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The Saffman and TaylorSaffman and Taylor [19581958] solutions are given by

q0 =

√
1− s

1 + αs
(13.8a)

θ0 = cos−1 q0, (13.8b)

where

α =
2λ− 1

(1− λ)2
. (13.9)

See further notes.11 1In his PhD thesis, McLean
derives the (q, θ) leading-order
solution directly from the
Saffman-Taylor (x, y) solution in
(13.213.2), then also demonstrates
from direct substitution into
the governing equations that it
satisfies the equations; it is not
made precisely clear how easy it
is to derive the above without
access to the Fourier-series
summed solutions of Saffman
and Taylor.

13.3 numerical solutions and the leading-order
approximation

We shall give a flavour of how the boundary integral formulation is
numerically solved, and the resultant eigenvalues.

13.4 extension into the complex plane

The leading-order solution (13.8a13.8a) contains a singularity in complex s-
space, at s = −1/α. Like the many examples of exponential asymptotics
we have examined thus far, this singularity is expected to drive the
divergence of the late terms. We will be required to study the behaviour
of the asymptotic approximations for general complex values of s off
the physical free-surface. Thus in preparation, we shall consider the
extension of the governing system of equations (13.413.4) into complex
values of s. This procedure is similar to the one in section 12.412.4.

The dynamic boundary condition (13.4b13.4b) needs no change, except
now the differentiation is considered for complex s. The boundary
integral equation (13.4a13.4a) can be extended into the complex plane by
considering

log q = − s

π

∫ 1

0

θ(s′)
s′(s′ − s)

ds′ + iθ(s), (13.10)

where above, s is now a complex number in the upper-half plane22. 2By taking s down to the
axis along 0 < s < 1, we can
verify that the regular contour
integral reduces to a principal-
value integral plus half-a-residue
contribution. Thus the inte-
gral − s

π

∫ 1

0

θ(s′)
s′(s′−s)

ds′ becomes

− s
π
−
∫ 1

0

θ(s′)
s′(s′−s)

ds′ − iθ(s).

Therefore, in order to obtain the analytic extension of q(s) and θ(s)
off the half finger, we use the complexified boundary integral equation
(13.1013.10) along with the dynamic condition (13.4b13.4b). Then the task will
be to study the asymptotic expansion of the solutions.

As in ChapmanChapman [19991999], it is useful to consider an additional trans-
formation that maps the slit s-plane to a more convenient domain,
particularly due to the fact that the top- and bottom of the fingers map
to the top- and bottom of the slit 0 < s < 1. Setting

y = −
√

1− s

s
, (13.11)

the free surface now lies entirely on the real y-axis, with the symmetry
axis about the origin. Take care to note that the y used henceforth is
not the vertical physical coordinate. The y-plane is shown in fig. 13.613.6.
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Figure 13.6: Configuration in
the y-plane.

The set of equations is now

log q − iθ = Ĥ [θ](y), (13.12a)

ϵ2
q(1 + y2)

4y

d

dy

(
q(1 + y2)

y

dθ

dy

)
− q = − cos θ, (13.12b)

θ(−∞) = 0, (13.12c)

θ(0) = −π
2
.

Note that under this coordinate change and the symmetry axis, we may
now replace the condition at the origin with the condition that

θ(∞) = −π. (13.12d)

Above, we have defined the (complex) Hilbert transform, Ĥ , of a
function to be

Ĥ [θ](y) =
2

π

∫ 0

−∞

y′θ(y′)
y2 − y′2

dy′. (13.13)

Note that this definition of Ĥ differs from that introduced in chapter 1212.

13.5 exponential asymptotics

The strategy for application of exponential asymptotics to the viscous
fingering problem will be similar to the case of free-surface flow in chap-
ter 1212. We begin by naively expanding the solution as a perturbative
series

q =

∞∑
n=0

ϵ2nqn and θ =

∞∑
n=0

ϵ2nθn, (13.14)

and seek to establish the eventual divergence of the asymptotic ex-
pansion after studying a number of the low-order terms. The integro-
differential form of the system (13.1213.12), which involves an integral of the
solution along the boundary, poses some challenge. However, like for
the case of low-Froude water waves in chapter 1212, there is a critical ar-
gument (in section 13.5.113.5.1) that essentially allows the boundary-integral
term to be neglected when consider the late terms of the asymptotic
expansion.

At O(1), the solution is given by solving

log q0 − iθ0 = Ĥ θ0, (13.15a)

q0 = cos θ0, (13.15b)

θ0(−∞) = 0, θ0(∞) = −π. (13.15c)
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The solution is the Saffman-Taylor solution33 (13.813.8), which is given in 3Please insert more details
to derive!the new notation as

q0 = cos θ0 = − y

(1 + α+ y2)1/2
, (13.16a)

sin θ0 = − (1 + α)1/2

(1 + α+ y2)1/2
, (13.16b)

where α = α(λ) is defined by (13.913.9) and relates to the non-dimensional
finger width λ. Notice that the leading-order asymptotic solutions, q0
and θ0, contain singularities44 in the complex plane at y = ±i

√
1 + α, 4Taking the arcsin for θ0 also

yields a (removable?) singular-
ity where sin θ0 = ±1 or y = 0.
Might need to have a think about
whether this has an effect?

and there are further potential singularities at y = 0 and y = ±1 on
account of the differential equation (13.12b13.12b).

In the limit n→ ∞, we posit the factorial-over-power ansatz,

qn ∼ Q(y)Γ(2n+ γ)

[χ(y)]2n+γ
θn ∼ Θ(y)Γ(2n+ γ)

[χ(y)]2n+γ
(13.17)

In fact, only the ansatz for θn is required as there is an expression [cf.
later (13.1913.19)] that relates θn with qn. Note that this compares with

ChapmanChapman [19991999] eqn (3.12)
who uses the ansatz for θn of
ΛΓ(2n + γC + 1)/[u(y)]2n+β(y).
We can transform our (13.1713.17)
to this alternative ansatz by
setting γ = γC + 1 =, Θ =
Λ/uβ−γ and χ = u. Our choice
allows consistency throughout
this book.

13.5.1 Subdominance of the boundary integral

Let us first turn to the boundary integral equation (13.12a13.12a) and seek
the O(ϵ2n) terms. Expanding the full logarithm, for instance, produces,

log q = log q0 + log

[
1 +

(
ϵ2
q1
q0

+ . . .

)]
= log q0 +

[(
ϵ2
q0
q0

+ . . .+ ϵ2n
qn
q0

+ . . .

)
− 1

2

(
ϵ2
q0
q0

+ . . .+ ϵ2n
qn
q0

+ . . .

)2

+ . . .

]
.

As usual, the nonlinearity of the quantities renders extraction of the
orders difficult. However, in considering (13.12a13.12a) we do not need the
full list of terms at O(ϵ2n), only[

qn
q0

+O(qn−1)

]
− iθn = Ĥ θn. (13.18)

Notice here that we have not included terms that are factors of qn−1,
qn−2, and so forth. In essence, these terms are sufficiently subdominant
as n→ ∞ and are not required in order to characterise the leading-order
divergence.

At this point, there is a trick that allows us to argue the subdom-
inance of the Hilbert transform term Ĥ θn as n → ∞. Observe that
this term is given by

Ĥ θn =

∫ 0

−∞

ȳθn(ȳ)

y2 − ȳ2
dȳ.

Thus, in following the procedure, we would typically substitute the
ansatz (13.1713.17) into the above transform and estimate the size of the
resultant integral. However, notice that the above integral the late terms
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along the negative ȳ-axis, and hence its magnitude is approximately
controlled by the smallest values of χ along the axis. Once we have
found χ through the procedure in the next section, we can verify a
posteriori that the dominant contribution to the integral comes from
the endpoint ȳ = 0 and that this contribution is subdominant to the
terms on the left hand-side of (13.1813.18) for those regions of y ∈ C which
we are concerned. Thus we have a reduction of the boundary-integral
equation to

qn ∼ iq0θn as n→ ∞. (13.19)

The idea that the Hilbert transform can be largely neglected in
the analysis of the late terms is a significant simplification, and the
consequence is that the exponential asymptotics analysis then resembles
those typical cases of nonlinear differential equations presented earlier.
For the case of the Saffman-Taylor viscous fingering problem, the legiti-
macy of the manipulation was proved rigorously by Tanveer and XieTanveer and Xie
[20032003] but it was used in a somewhat ad-hoc manner those who first
solved the viscous fingering problem.

13.5.2 Late orders analysis of the surface equation

We now turn to analysis of the O(ϵ2n) terms of Bernoulli’s equation
(13.12b13.12b). In expanding this expression under the series substitution,
we essentially seek to determine the two highest orders as n → ∞
since these are involved in determining the values of χ and Θ. Here,
terms like θn will dominate terms such as θn−1 since each downwards
shift of the subscript corresponds to a subtraction in the argument
of the Gamma function (and hence slower growth in n). Similarly,
differentiation of a term, say θn, increases the order in comparison with
the undifferentiated term on account of the power in the denominator
of ansatz (13.1713.17). There is thus an equivalency between differentiation
and shifting of the indices. 555By the nature of the

factorial-over-power expansion,
two derivatives will be equivalent
to substituting n→ n+ 1 in the
order. It will turn out that we
need to keep terms that include
θ′′n−1, {θ′n−1, q

′
n−1}, and θn.

We have that at O(ϵ2n) for n ≥ 1,

q0(1 + y2)

4y

d

dy

[
qn−1(1 + y2)

y
θ′0

]
+
qn−1(1 + y2)

4y

d

dy

[
q0(1 + y2)

y
θ′0

]
+
q0(1 + y2)

4y

d

dy

[
q0(1 + y2)

y
θ′n−1

]
+ . . .− qn = θn sin θ0 + . . .

We can simplify this expression by setting

P (y) =
1 + y2

y2
. (13.20)

Then expanding the derivatives and keeping relevant terms, we have[
q0
4
P 2θ′0

]
q′n−1+

[
q20
4
P 2

]
θ′′n−1+

[
q0
4
P
d(q0P )

dy

]
θ′n−1+. . .−qn = θn sin θ0+. . .

Writing qn ∼ iq0θn from (13.1913.19) gives[
q20
4
P 2

]
θ′′n−1

θn
+

[
iq20
4
P 2θ′0 +

q0
4
P (q0P )

′
]
θ′n−1

θn
∼ sin θ0 + iq0. (13.21)
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We now substitute the ansatz (13.1713.17) and expand the ratios. 66 6From the late-orders
ansatz and the expansion of the
Gamma function, we have the
ratio of

θ′n−1

θn
=

1

2n

[
−χ′χ

]
+ . . .

for the first derivative term.
Similarly, the second-derivative
term yields the ratio of

θ′′n−1

θn
= (χ′)2

+
1

2n

[
−2χ′χ

Θ′

Θ
−

χ′′χ

]
+ . . .

Collecting terms at O(1) and O(1/n) yields respectively:[
q20
4
P 2

]
(χ′)2 = sin θ0 + iq0, (13.22)

Θ′

Θ
= −1

2

[
χ′′

χ′ + iθ′0 +
(q0P )

′

q0P

]
. (13.23)

The first equation yields the singulant function, χ, and is discussed in
the next section. The second equation yields the pre-factor function; it
is integrated directly to obtain

Θ(y) =
Λe−iθ0(y)/2

[χ′(y)q0(y)P (y)]1/2
, (13.24)

where Λ is a constant of integration determined from a later inner-
matching procedure. At this point, recall that we have derived the
components Θ(y) and χ(y) appearing in the late-orders ansatz (13.1713.17).
Moreover, one Θ has been determined, then Q follows from the rela-
tionship of (13.1913.19) and hence

Q(y) = iq0(y)Θ(y). (13.25)

Thus, we only have the constants γ and Λ to be determined in order
to fully characterise the divergence of the asymptotic expansions. Be-
fore deriving these constants, which are determined using a matched
asymptotics expansion near the relevant singularities, let us study the
crucial function χ.

13.6 analysis of the singulant

The singulant function, χ, given by solving (13.2213.22) provides the key
component of the viscous fingering selection mechanism. Solving for
χ yields a choice of two square-root branches, ±, as well as a constant
of integration. Recall in our discussion in the paragraph above (13.1713.17)
that the singularities in the low-order terms, notably at

y = ±i
√
1 + α, (13.26)

serve as the dominant mechanism producing divergence. By assumption
of the asymptotic divergence, χ = 0, at a selected singularity. Let
us consider the nearest singularity in the upper half-plane, located at
y = i(1 + α)1/2. Then the corresponding singulant function is77 7In general, there is a singu-

lant function produced for each
singularity in the analytic contin-
uation of the low-order asymp-
totic terms—that is, for a gen-
eral point y ∈ C, the divergence
of the asymptotic expansion is
dominated by a factorial-over-
power growth with a singulant
function that has the smallest
value of |χ| at that point. How-
ever, we are firstly considering
the divergence at a point y along
the real axis.

χ(y) = 2i

∫ y

i(1+α)1/2

[(1 + α)1/2 + iȳ]3/4[(1 + α)1/2 − iȳ]1/4

1 + ȳ2
dȳ. (13.27)

As is typical by this stage of our work, Stokes line are expected along
those curves, such that

Imχ(y) = 0 and Reχ(y) ≥ 0.

across which an exponentially-small term is expected to be switched on.
In fact, the integral (13.2713.27) can be explicitly integrated (but otherwise,
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contours can be calculated by numerical quadrature) and the Stokes
lines visualised in the complex y-plane.

Consider firstly the case of α < 0. This produces a Stokes line
configuration of fig. 13.713.7. In this case, there is a central Stokes line
that switches on terms across the origin, y = 0. These terms cannot be
switched off. In particular, the symmetry condition at y = 0 cannot be
satisfied and is off by an exponentially small error. We thus argue that
for α < 0, solutions do not exist in the limit ϵ→ 0.
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Figure 13.7: Stokes lines for
the case of α = −0.5. NB:
these are actually equal phase
lines and I have not yet re-
moved curves with Reχ < 0.

In contrast, for the case of α > 0, the Stokes lines shown in fig. 13.813.8
show that there is now a localised region near the origin where expo-
nentials can be switched on, firstly for y < 0, but then switched off
for y > 0. In order for this to occur, we must ensure that ϵ is ‘tuned’
appropriately for the size of the localised region between Stokes lines.
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Figure 13.8: Stokes lines for
the case of α = 0.75. The sin-
gularity at y = i

√
1 + α pro-

duces two relevant Stokes lines
that curve downwards. Sim-
ilarly, the mirror singularity
in the lower half-plane pro-
duces two Stokes linse curving
upwards. A localised region
is produced where oscillations
must be contained.

The Stokes line arrangement for the case of α > 0 also shows a
possible distinguished limit. If α→ 0 simultaneously to ϵ→ 0, then the
singularity at y = i

√
1 + α merges with he singularity at y = i, and we

can no longer assume that the Stokes contributions are non-interacting
and additive. The analysis of this distinguished limit, which happens
to be for α = O(ϵ4/3), demands a separate investigation.

13.7 optimal truncation and stokes switching

Details to be included. . .
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The Stokes line switching should be very similar to the case of
low-Froude flows, and we would expect that across Stokes lines, an
exponential scaling like

qexp ∼ const.×Q(y)e−χ(y)/ϵ. (13.28)

Complex conjugate contributions are also switched on.
We can either impose the dual-wave constraint or instead impose a

zero first derivative at the origin.

13.8 variations

Kinetic undercooling Chapman and KingChapman and King [20032003]

13.9 exercises

1. Derive the Saffman-Taylor zero-surface-tension solution in (13.213.2).
This follows the derivation shown in Saffman and TaylorSaffman and Taylor [19581958],
p. 351 by expressing y as a Fourier series,

y =
ψ

V
+

∞∑
n=1

An sin

(
nπψ

V

)
e−nπ/ϕ/V . (13.29)

§13.8 · variations 131


