
water waves at low speeds

12Draft chapter last generated 2024-12-02; P.H. Trinh

The historical origins of the so-called low-Froude or low-Speed para-
dox that forms the subject of this chapter is often attributed to the work
of naval architect T. F. Ogilvie [OgilvieOgilvie, 19681968] — although Ogilvie cites
the earlier work of Nils Salveson [SalvesenSalvesen, 19661966, 19691969] as providing the
initial paradox.

Let us consider the surface waves produced by a body moving within
or beneath a free surface under the effects of gravity. A prototypical
situation is shown below:

Figure 12.1: Flow past an
aerofoil

Previously, MichellMichell [18981898] proposed the idea of a thin-ship approxi-
mation, in which the solution is approximated under the assumption
that the obstruction is thin in one or several of its dimensions. For the
above situation, the free surface height, η(x), can be expanded as

η(x) = η0(x) + δη1(x) + δ2η2(x) + . . . (12.1)

where δ = L/b ≪ 1 characterises the thinness of the obstruction in
comparison with its depth of submergence. The boldness and ingeunity
of Michell’s approximation was twenty-years beyond the state-of-the-
art [TulinTulin, 19781978, WehausenWehausen, 19731973]; it went unappreciated until the
expansion by HavelockHavelock [19231923]. Much later, TuckTuck [19651965] studied the
linear ship-wave theory of Michell, and indicated that the second-
order thin-ship approximation was contentious because it invalidated
the surface boundary conditions — thus Michell’s procedure does not
preserve the free surface as a streamline of the flow.

Consequenty, during this period of the 1960s and 1970s, there was
great interest in better understanding the higher-order approximations
of ship-wave theory. In view of this, SalvesenSalvesen [19661966] performed a
numerical and experimental study of flow past a submerged aerofoil.
Michell’s approximation was computed to third order, and Salveson
produced the graph in fig. 12.212.2, which demonstrates how each term
in the approximation contributes to estimating the downstream wave
height. The key aspect of fig. 12.212.2 is that the relative contribution of the
third-order effects (shown solid) [i.e. δ3η3/(η0 + δη1 + δ2η2) in relation
to (12.112.1)] exceeds the contributions from the first- and second-order
effects when the speed, U , is continually diminished.
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Figure 12.2: A reproduc-
tion of Salveson’s figure from
SalvesenSalvesen [19691969] showing a com-
parison of downstream wave
heights using first- (dash-
dotted), second- (dashed), and
third-order (solid) thin-ship
theory. The higher-order con-
tributions are more important
as U → 0.

For the two-dimensional wave-structure interactions typified by
fig. 12.112.1, the Froude number,

Fr =
U√
gL

,

provides a relative measure of the inertial effects in comparison to
gravitational effects. The above is for a flow with characteristic velocity,
U , length scale L, and gravity g.

Salveson’s work, and the unusual behaviour of the series approxi-
mations in the low-Froude limit was highlighted by OgilvieOgilvie [19681968]:

It appears paradoxical that it should be necessary to include
higher-order approximations at very low speeds, for the total
disturbance becomes small and smaller as speed is reduced
more and more toward zero. One should expect that the
assumptions required for linearizing ought to become steadily
more nearly valid as the free-surface deflection decreases.
Instead, the problem appears to become more nonlinear!

At the time it was understood that the perturbative problem of Fr → 0
was singular and in this limit, the resultant free-surface waves are
exponentially small in the Froude number. However, this initiated a
longstanding search for a consistent low-Froude theory. The history of
the low-Froude problem from a naval standpoint is summarised by TulinTulin
[20052005, 19781978]. Work in this area continued through Ogilvie and colleagues
(OgilvieOgilvie 19681968, 19701970, Ogilvie and ChenOgilvie and Chen 19821982, Chen and OgilvieChen and Ogilvie 19821982),
but also through a variety of international efforts. Perhaps the first
paper to relate the low-Froude problem to beyond-all-orders techniques
was the semi-numerical work by Vanden-Broeck et al.Vanden-Broeck et al. [19781978] on two-
dimensional blunt-bodied, and there are further important ideas using
the ray-theoretic viewpoint of geometrical optics by KellerKeller [19781978].

The first exponential asymptotics of the low-Froude problem ap-
pears in Chapman and Vanden-BroeckChapman and Vanden-Broeck [20022002] (for capillary waves) and
Chapman and Vanden-BroeckChapman and Vanden-Broeck [20062006] (for gravity waves), and in recent
years, this has initiated a great number of interesting extensions. Our
work in this chapter will follow the latter approach.
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12.1 water wave equations as an integro-differential
equation

Let us consider two-dimensional steady irrotational flow past a semi- We give a very basic introduc-
tion to the development of the
boundary-integral formulation
of potential flow suitable for
those without a background in
fluid mechanics.

infinite body, which consists of a flat bottom (y = −H, x < 0), and a
face oriented at an angle πσ to the horizontal (0 < σ < 1). There is a
uniform stream of speed U as x→ −∞, and we assume that the flow
attaches to the stern at a stagnation point. So the situation looks like
the below.

Figure 12.3: Physical flow past a ship

We let u = [u(x, y), v(x, y)] be the velocity at a point in the fluid. The
velocity potential is introduced, with u = ∇ϕ(x, y). The problem can
be non-dimensionalised11. The motion of the fluid [see Vanden-BroeckVanden-Broeck 1Non-dimensionalisation is

the procedure in which variables
are scaled according to typical
physical lengths; here (i) the
stagnation point is located at
(x, y) = (0, 0) and ϕ = 0; (ii)
the corner of the stern is located
at ϕ = −1; and (iii) the poten-
tial tends to the unit free-stream,
ϕ→ 1, as x→ −∞

[20102010]] is then governed by Laplace’s equation, with the kinematic
condition on all boundaries, and Bernoulli’s equation on the free-surface:

∇2ϕ = 0 for (x, y) in the fluid, (12.2a)

∂ϕ

∂n
= 0 for (x, y) on the hull and free-surface, (12.2b)

ϵ

2
|∇ϕ|2 + y = 0 for (x, y) on the free-surface, (12.2c)

where all variables now non-dimensional. The parameter ϵ = U2/gL is
related to the square of the draft-based Froude number and ϵ ≪ 1 is
the low-Froude regime we shall study.

The solution of (12.212.2) is difficult primarily for two reasons. First,
the flow domain is relatively complicated—here, the normal derivative
conditions must be applied along the stern body as well as an unknown
free-surface. Second, the dynamic condition (12.2c12.2c) is nonlinear. In
modern day computation, we would typically need to mesh the flow
domain and solve the partial differential equation numerically using
finite-difference or finite-element schemes.

However, in two-dimensional potential flows, complex variable theory
can be applied to reformulate the problem in a more tractible form. The
trick is to introduce the complex potential w = ϕ+ iψ, which combines
the potential ϕ with its harmonic conjugate, the streamfunction, ψ. We
also set z = x+iy. The role of the dependent and independent variables
are then switched, and we seek z = z(w). The ship/free-surface lying
along ABC is a streamline of the flow, and can be chosen to be ψ = 0.
If z(w) is analytic in the fluid region, then Laplace’s equation (12.2a12.2a)
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is satisfied. Similarly, as the boundary lies on ψ = 0, the kinematic
condition (12.2b12.2b) is satisfied.

Instead of solving for z(w), we shall find it more convenient to work
with speed and angular components. We introduce q for the speed of
the flow and θ for the angle the streamline makes with the x-axis. Then

qe−iθ ≡ dw

dz
= u− iv, (12.3)

The imposition of Laplace’s equation ∇2ϕ = 0 is then equivalent to
imposing a boundary-integral relationship that relates q and θ. By
Cauchy’s theorem, this relationship is shown to be

log q =
1

π
−
∫ ∞

−∞

θ(φ)

φ− ϕ
dφ.

The ‘dash’ through the integral signifies the Cauchy Principal Value22.2The Cauchy Princi-
pal Value Integral is de-
fined via −

∫∞
−∞ . . . dφ =

limδ→0(
∫ ϕ−δ

−∞ +
∫∞
ϕ+δ

) . . . dφ.

The key is that we have replaced the two-dimensional Laplace’s equation,
∇2ϕ = 0, with an integral equation that only requires values on ψ = 0.

Imposing the hull geometry33 and setting θ = 0 for ϕ < −1 and

3Note that the relation be-
tween ϕ and the physical plane
(and hence the physical size of
the ship’s face) can be deter-
mined a posteriori once (12.512.5)
and (12.412.4) have been solved.

θ = πσ for −1 < ϕ < 0 then gives

log q = log

(
ϕ

ϕ+ 1

)σ
+

1

π
−
∫ ∞

0

θ(φ)

φ− ϕ
dφ. (12.4)

Differentiating Bernoulli’s equation (12.2c12.2c) tangentially, that is,
with respect to ϕ, yields

ϵq2
dq

dϕ
+ sin θ = 0, (12.5)

where the free surface condition is applied to the streamline ψ = 0 for
ϕ > 0.

The task is to solve for the two unknowns q(ϕ) and θ(ϕ) along the
physical free surface, ϕ > 0. Once this is done, the physical coordinates
can be obtained by integrating (12.312.3), theta is

z(ϕ) = x(ϕ) + iy(ϕ) =

∫ ϕ

0

eiθ(φ)

q(φ)
dφ.
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% Parameters and p o t e n t i a l mesh
n = 1000 ; dw = 0 . 0 3 ; ep = 1 ; sigma = 1/2 ;
phi = ( 0 : n−1)∗dw; phim = phi ( 1 :end−1) + dw/2 ;

% Solve the system and p l o t the s o l u t i on
fwd = @(u) func (u , phi , phim , n , ep , sigma , dw) ;
theta = f s o l v e ( fwd , zeros (1 , n ) ) ; [F , tau m ] = fwd ( theta ) ;
qm = exp( tau m ) ;
plot (phim , qm) ; xlabel ( ’ \phi ’ ) ; ylabel ( ’ q ’ ) ;

function [ F , tau ] = func (u , w, wm, n , ep , sigma , dw)
% Function f i l e f o r Bernou l l i ’ s equat ion

tau = sigma∗ log (wm. / (wm+1) ) ; aux = [dw∗ ones (1 , n−1) dw/ 2 ] ;
for j = 1 : n−1, tau ( j ) = tau ( j ) + 1/pi∗sum(u .∗ aux . / (w−wm( j ) ) ) ;

end

thetam = 1/2∗(u ( 1 : n−1)+u ( 2 : n) ) ;
dtau = 1/dw∗ [ ( tau (2 )−tau (1 ) ) , . . .

( tau ( 3 : n−1)−tau ( 1 : n−3) ) /2 . 0 , ( tau (n−1)−tau (n−2) ) ] ;

F ( 1 : n−1) = ep∗exp(2∗ tau ) .∗ dtau + exp(−tau ) .∗ sin ( thetam ) ;
F(n) = u (1) ;

end

Table 12.1: This MATLAB
code solves for the ship stern
problem. This particular in-
stance solves the σ = 0.5 stern
at ϵ = 1.0 with n = 1000
points and a discretisation dis-
tance of ∆ϕ = 0.03 (denoted
dw in the code). It makes use
of MATLAB’s fsolve func-
tion for the solution of the al-
gebraic equation denoted by
func.

12.2 numerical solutions of the stern problem

Our task is to solve for the speed, q, and angle θ along the free surface,
ϕ > 0. We have a nonlinear differential equation (12.512.5) as well as
a boundary-integral relationship (12.412.4). This can be done using the
following simple algorithm44. 4These methodologies are

used by many authors comput-
ing two-dimensional nonlinear
flows over obstructions; more de-
tails can be found in the gen-
eral reference by Vanden-BroeckVanden-Broeck
[20102010].

We first truncate the semi-infinite domain to a finite interval and
introduce an equally spaced mesh55 for ϕ = ϕi with i = 1, . . . , n− 1. We

5The main points are ϕi =
(i − 1)∆ϕ with separation dis-
tance ∆ϕ for i = 1, . . . , n and the
midpoints are ϕm

i = 1
2
(ϕi+ϕi+1)

for i = 1, . . . , n− 1.

also define the midpoints ϕmi for i = 1, . . . , n− 1, which are introduced
as a device to avoid the singular nature of the integral. The midpoint
values of τmi = log qmi are calculated from the integral (12.412.4). The
principal value integral is computed by applying the trapezoidal rule
with a summation over the mesh points ϕi; this use of equally spaced
points and midpoints should allow us to neglect the singularity of the
principal value without losing accuracy.

Bernoulli’s equation, evaluated at the midpoint values, then provides
a system of n−1 equations to solve. The derivatives dτ/dϕ are computed
using second-order differences. For the nth equation, we assign the
boundary condition corresponding to a stagnation point, Fn = θ1 = 0

Table 12.112.1 shows just how compact this code can be made when
combined with the built-in nonlinear solver of the matlab environment.
In the included example, we solve for the vertical σ = 1/2 hull at ϵ = 0.8.
An example output is shown in fig. 12.412.4.

12.3 naive asymptotic analysis

In the naive analysis, we would expand q and θ as series expansions
in powers of ϵ. Setting q = q0 + ϵq1 + . . . and θ = θ0 + ϵθ1 + . . ., then
from the surface equation (12.512.5), we have sin θ0 = 0 and hence θ0 = 0.
Indeed this is a sensible approximation – as ϵ → 0, the speed of the
stream tends to zero and the free-surface is approximately flat66. If we 6Alternatively we can con-

sider ϵ→ 0 as equivalent to tak-
ing gravity, g → ∞, which has
the effect of pressing the surface
flat§12.2 · numerical solutions of the stern problem 113
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Figure 12.4: Solution for
σ = 1/2 at ϵ = 0.8
(solid), computed using the
code in 12.112.1. The leading-
order asymptotic approxima-
tion is shown dashed.

now substitute θ0 = 0 into (12.412.4) we obtain the leading-order speed on
the free-surface,

q0 =

(
ϕ

ϕ+ 1

)σ
. (12.6)

The above leading-order speed has been plotted in fig. 12.412.4, where we
see it agrees very well with the solution—except for the fact it fails
to capture the surface waves. The above solution is known as the
‘double-body flow’ since it is akin to flow over the step and the ‘image
of the step’ within a rectangular channel77.7Need a picture

Notice, as well, that the analytic continuation of q0 from the physical
free surface, where ϕ > 0, and into the complex ϕ-plane, yields a
singularity at ϕ = −1 or more generally, at ϕ = e±πi, e±3πi, . . .). The
next order in (12.512.5), shows that

θ1 = −q20
dq0
dϕ

, (12.7)

and consequently, θ1 (and q1) will inherit the branch point singularities
in q0. Each order differentiates the previous, and hence the power of
the singularity must grow. The series diverges and the task now is to
characterise this divergence.

12.4 asymptotic analysis as n → ∞

As we have noted, the singularity at ϕ = −1 (and possibly ϕ = 0)
in (12.612.6) drives the divergence of the asymptotic expansion. Such
singularities are typically complex-valued and lie away from the physical
domain. Thus, to study their effects, we must consider an extension of
the governing equations to the complex plane. Let ϕ be complex and
we label88 ϕ = ϕr + iϕc 7→ w ∈ C. We now have8There is a somewhat confus-

ing abuse of notation where we
have relabeled the complexified
ϕ as the former complex poten-
tial variable, w.114 chapter 12 · water waves at low speeds



log q ± iθ = log

(
w

w + 1

)σ
+ Ĥ θ, (12.8a)

ϵq2
dq

dw
+ sin θ = 0, (12.8b)

where we have defined Ĥ to be the complex Hilbert transform operator99, 9Notice here that for w in
the upper- or lower-half complex
plane, the integral no longer re-
quires the principal value.Ĥ θ(w) =

1

π

∫ ∞

0

θ(φ)

φ− w
dφ.

The ± sign that appears in the integral equation corresponds to analytic
continuation in the upper and lower half-w-planes, respectively, and we
can verify that as w approaches the positive real axis, we recover the
previous real-valued formulation.1010 In the following, we shall perform 10Specifically, as w → ϕr

from the upper-half plane, we
have Ĥ θ = 1

π
−
∫∞
0

θ
φ−ϕr

dφ+ iθ.
The argument for the lower half-
plane is performed analogously
with a change in sign of the
residue contribution.

the study for analytic continuation into the upper half-plane.
We substitute

q =
∞∑
n=0

ϵnqn and θ =
∞∑
n=0

ϵnθn. (12.9)

into (12.812.8). This yields for the first two orders,

θ0 = 0 on w ∈ R+, (12.10a)

q0 =

(
w

w + 1

)σ
, (12.10b)

θ1 = −q20
dq0
dw

, (12.10c)

q1
q0

+ iθ1 = Ĥ θ1(w). (12.10d)

The full expressions for the higher O(ϵn) terms are more complicated,
but ther is significant simplification as n → ∞. Examining q0 in
(12.10b12.10b), the solution contains two singularities, identifiable with points
in the flow-domain—one at the corner of the stern (w = −1) and the
other at the stagnation point (w = 0). Because all the higher-order
problems are linear, no new singularities can be introduced and thus
the singular points of qn(w) must be those same singularities as for q0.
Then as n→ ∞, we can expect the late terms to behave like factorial
over power,

θn ∼ Θ(w)Γ(n+ γ)

χ(w)n+γ
and qn ∼ Q(w)Γ(n+ γ)

χ(w)n+γ
. (12.11)

The relevant terms1111 at O(ϵn) are: 11In the limit that n → ∞,
terms like qmqn (for m finite)
dominate terms with smaller
indices in n, such as qmqn−1.
Moreover, differentiating a term
increases the order (in n) by 1,
so a term like ϵdqn−1/dw is of
the same order as qn.

first order︷ ︸︸ ︷
qn
q0

+ iθn−

second order︷ ︸︸ ︷
qn−1q1
q20

+ . . . =

exp. subdominant︷ ︸︸ ︷
H [θn] , (12.12)

q20q
′
n−1︸ ︷︷ ︸

first order

+2q0q1q
′
n−2 + 2q0q

′
0qn−1︸ ︷︷ ︸

second order

+ . . . = − cos(θ0)θn︸ ︷︷ ︸
first order

+ . . . . (12.13)

We claim, at least for the moment, that the integral on the right-
hand side of the boundary integral equation (12.1212.12) is exponentially
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subdominant to the terms on the left-hand side for large n. We address
this claim a little later in §12.812.8, but for now, we will assume that

qn ∼ −iq0θn − iθn−1q1 + . . . as n→ ∞, (12.14)

obtained from setting Ĥ to zero in (12.1212.12) and re-arranging.

Finally, substituting (12.1412.14) into the dynamic condition (12.1312.13) and
simplifying yields the final form of our O(ϵn) expression:

first/second order︷ ︸︸ ︷[
q30q

′
n−1 + iqn

]
+

[
2q20q

′
0qn−1 + 2q20q1q

′
n−2 − i

qn−1q1
q0

]
︸ ︷︷ ︸

second order

+ . . . = 0.

(12.15)

At this point, the manipulations are similar to those that appear in
previous chapters. The factorial over power ansatz (12.1112.11) is substituted
into (12.1512.15) and the first two orders as n→ ∞ extracted. This yields
differential equations for the two key components of χ and Q:

dχ

dw
=

i

q30
, (12.16a)

Q′

Q
= −2q′0

q0
+

3iq1
q40

. (12.16b)

Integrating then yields

χ =

∫ w

w0

i

q30(φ)
dφ, (12.17a)

Q =
Λ

q20
exp

(
3i

∫ w

w⋆

q1(φ)

q40(φ)
dφ

)
. (12.17b)

The function χ is assumed to drive the divergence of the asymptotic
expansion, with χ = 0, at a selected singularity, w0. We will choose theIn general, we may need to

consider a sum over multiple
ansatzes of the form (12.1112.11) and
hence an expression such as∑ QkΓ(n+γk)

χ
n+γk
k

. However, the de-

velopment of the factorial-over-
power ansatzes are typically lin-
ear so it suffices to consider an
individual one as we do here.

initial point of integration in the next section. In the expression for Q,
Λ is a constant of integration and w⋆ is any arbitrary point for which
the integral exists.

By the ansatz (12.1112.11) and the simplification of the boundary-integral
relationship in (12.1412.14), we know that θn ∼ iqn/q0 and thus

Θ =
Λi

q30
exp

(
3i

∫ w

w⋆

q1(φ)

q40(φ)
dφ

)
. (12.18)

Finally, it remains to determine the power, γ, that appears in the
ansatz (12.1112.11), as well as the prefactor Λ.

12.5 inner problem

In order to completely determine the divergent behaviour of (12.1112.11),
we must calculate the power γ and prefactor Λ. Firstly, γ can be
determined by ensuring that the singularity predicted by the late-orders
form is consistent with the singularity present in the low orders. Let us
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focus on the singularity at w = −1 and define W = w+1. By (12.10b12.10b),
we have that

q0 ∼ cWα as W → 0 (12.19)

where c = (−1)σ and α = −σ. Using the above asymptotic behaviour
in (12.17a12.17a) and performing a local integration, we have that in the same
limit,

χ ∼ W 1−3α

c3(1− 3α)
= O

(
W 1−3α

)
. (12.20)

Similarly, the inner limit of Q in (12.17b12.17b) can be obtained1212 as 12See
Chapman and Vanden-BroeckChapman and Vanden-Broeck
[20062006] or Trinh et al.Trinh et al. [20112011].
Briefly explained, we show
that q1 = O(q30

dq0
dw

). This is
then used in Q to show the
exponential factor in (12.17b12.17b) is
O(1/q30). This power of −3 is
combined with the power of −2
in (12.17b12.17b) to form a power of
−5 in (12.2112.21).

W → 0, and demonstrates that

Q = O
(

1

q50

)
= O(W−5α). (12.21)

Thus as the relevant singularity is approached, the qn expression in
(12.1112.11) behaves as qn = O(W−5α−(1−3α)(n+γ)). Requiring it to match
(12.1912.19) with n = 0 yields

γ =
5α

1− 3α
= − 5σ

1 + 3σ
. (12.22)

It remains to determine the prefactor Λ that appears in the form of Q
in (12.17b12.17b). There is no simple analytical procedure for this; in order to
calculate Λ, we must solve a recurrence relation. We do not present the
details here but refer readers to Chapman and Vanden-BroeckChapman and Vanden-Broeck [20062006]
and Trinh et al.Trinh et al. [20112011].

12.6 the stokes switching

The procedure for optimal truncation and derivation of the general form
of the exponentials switched on follows in a somewhat generic way to
procedures shown in previous chapters. The solution is expressed as an
optimally truncated series and remainder, and a linear equation for the
remainder is sought. The equation for the remainder is forced by the
late-orders behaviour (??) and thus establishes the connection between
the exponentially-small terms and the divergent series. The theory can
be found in [Chapman and Vanden-BroeckChapman and Vanden-Broeck, 20062006, Sec. 4]. The point is
that across a Stokes line, the following term switches on in q:

∼ 2πi

ϵγ
Qe−χ/ϵ. (12.23)

There is one such contribution for each relevant Stokes line intersection.

12.7 stokes lines

There are two singularities that can play an important role in driving the
divergence of the series and in the subsequent production of exponential
switchings. Numerically, it can be confirmed that the stagnation point
e = 0 does not produce a significant contribution (cf §5.1 of Trinh et al.Trinh et al.
20112011), and so we shall focus on the corner point1313. 13The nature of the free-

surface near the stagnation
point, w = 0, is a surprisingly
complex problem. First, there
is the issue of how the solution
behaves near w = 0 at a fixed
value of ϵ (the inner problem);
the works of, for example, ? and
? have examined some of these
problems. Second, there is the
question of how the solution near
w = 0 interacts with the low-
Froude expansion of (??) and
in particular, what is its role (if
any) in controlling the produc-
tion of downstream waves. In
regards to this latter question,
? has provided a series of unan-
swered questions for simpler dif-
ferential equations related to the
full water wave equations in (??)
and (??).
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The corner is the critical point which is responsible for the generation
of waves. Since χ(−1) = 0, we may write (12.17a12.17a) as

χ = i

∫ w

−1

1

q30(φ)
dφ = i

∫ w

−1

(
φ+ 1

φ

)3σ

dφ, (12.24)

where the contour of integration can be taken along any path in the
upper-half plane, not through w = 0. Near the corner,

q0 ∼ eπiσ(w + 1)−σ and χ ∼
[
ie−3πiσ

1 + 3σ

]
(w + 1)1+3σ (12.25)

and from DingleDingle [19731973], Stokes lines are expected whenever 1 + 3σ > 0,
and also

Im(χ) = 0 and Re(χ) ≥ 0. (12.26)

The first (and only relevant) Stokes line leaves the critical point at an
angle of

ϑ = π

(
3σ − 1/2

1 + 3σ

)
,

arcs into the upper-half plane, and continues until it intersects the
free-surface. This is shown in Figure 12.512.5. We note that as σ → 0, the
intersection point tends towards the origin.
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Figure 12.5: Stokes lines for
various hulls, such σ = 0.2 as
①, σ = 0.4, σ = 0.5 as ②,
σ = 0.6 as ③, and σ = 0.8.
The Stokes lines are closed
loops that begin and end at
w = −1 and are symmetrical
about the real axis. Across the
intersection of the Stokes line
with Re(w) > 0, we expect an
exponential to switch on. Al-
though they are an imaginary
construct and lie on the analyt-
ically continued free-surface,
they nevertheless share a cor-
respondence with a line in the
physical plane which begins at
the corner and arcs towards
the free-surface.

12.8 exponential subdominance of the integral

There is a key simplification that was used in (12.1412.14) and allowed the
boundary integral to be neglected in consideration of the late terms.
In order to demonstrate the late-order subdominance of the boundary
integral, consider the case of σ = 1/2 (other values of σ are similarly
done). Here, the Stokes line originating from the corner leaves at an
angle of 2π/5 in the potential plane, curves in an arc, and intersects the
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Figure 12.6: The light lines
are contours for |χ(w)|, with
dark regions corresponding to
small values. The thick black
line corresponds to the Stokes
line, and the dashed line to
|χ(w)| = 3π/2. Our Stokes
line switching analysis is con-
fined to the region above the
dashed line, where the rele-
vant exponentials are larger
than anywhere along the free-
surface.

free surface at about w = ϕc ≈ 0.635. Along the real and positive w-
axis, Re(χ) = 3π/2, which can be computed by the residue contribution
of (12.2412.24) at infinity.

In Figure 12.612.6, we plot the contours of |χ(w)|, a thick line represent-
ing the Stokes line, as well as a dashed line for the contour |χ| = 3π/2.
Since χ(w) is an analytic function away from its singularities, the con-
tour |χ| = 3π/2 must necessarily intersect both the Stokes line and the
real axis at the single point w = ϕc. Moreover, along the real axis the
point ϕc constitutes an absolute minimum. For the equation

qn
q0

+ iθn −
qn−1q1
q20

+ . . . = H [θn(w)],

when the ansatz (12.1112.11) is used and the late terms sought, the integral
will be evaluated on the real axis, where χ is larger than on anywhere
along the Stokes line. Thus the right-hand side of the equation is
negligible as n → ∞. Essentially, its main effect in the analysis is in
altering the values of the early terms, q0, q1, q2, and so on.

The subdominance of the boundary integral term which occurs in
potential theory was also used for the analysis of the viscous fingering
problem in Hele-Shaw flows of Chap. 1313.

12.9 numerical verification

12.10 extensions

12.10.1 Two-dimensional flows for more general bodies

12.10.2 Three-dimensional flows

12.10.3 Time-dependent flows

12.10.4 Surface tension and other effects
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