
dendritic crystal growth
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In section 1.11.1, we initiated our interest in exponential asymptotics via
the presentation of the geometric model of crystal growth; the model
seeks to describe the prototypical interfacial growth seen in fig. 10.110.1.

Figure 10.1: Contours of dendrite growth from a solution. Image from
Dougherty et al.Dougherty et al. [19871987].

Thus, following the proposal by Brower et al.Brower et al. [19831983, 19841984], we make
the simplifying assumption that the crystal dynamics are governed
purely by the local geometry of the interface. With ϕ = ϕ(s) denoting
the angle of the normal (with the respect to the horizontal, x-axis)
of the interface, measured with arclength s, the following equation is
developed (section 1.11.1):

ϵ2
d3ϕ

ds3
+

dϕ

ds
= cosϕ, (10.1a)

ϕ→ ±π
2

as s→ ±∞. (10.1b)

Above, the assumption has been applied that the normal velocity of
the interface is vn = κ+ ϵ2κss where κ = dϕ

ds is the surface curvature.11 1For further history, see
Brower et al.Brower et al. [19831983, 19841984],
SegurSegur [19911991], GollubGollub [19911991],
Dougherty et al.Dougherty et al. [19871987].Sufficiency of the boundary conditions

We can inspect the sufficiency of the two boundary conditions
(10.1b10.1b) for the third-order problem. Near s = −∞, let ϕ = −π/2+
f , where |f | ≪ 1. We then have

ϵ2f ′′′ + f ′ = f, (10.2)

which must satisfy f → 0 as s → −∞. Writing the solution as a
sum of exponentials, with f ∼ ems, we find thataa

f ∼ aes + e−s/2(beis/ϵ + ce−is/ϵ). (10.3)

Thus as s → −∞, the solution is composed of a permissible ex-
ponential decay, and also two oscillatory (growing) modes. The
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boundary condition at s → −∞ thus imposes the requirement
that b = 0 = c and is in fact, equivalent, to two boundary condi-
tions. Similarly a linearisation about s = ∞ yields two additional
boundary conditions. Including the translational invariance of the
problem and thus the freedom to specify the origin in s, this yields
a total of five boundary conditions on a third-order problem. The
existence of a solution to the problem (10.110.1) would be unlikely
“unless some miracle occurs” [Kruskal and SegurKruskal and Segur, 19911991]. And yet
this revelation is somewhat paradoxical to the ease in which we
can derive sensible asymptotic solutions to all orders that satisfy
the necessary boundary conditions.

aExercise.

10.1 establishing the late orders

We begin as usual with the regular perturbative expansion,

ϕ ∼
∞∑
n=0

ϵnϕn. (10.4)

Noting that
cosϕ = cosϕ0 − ϵ2ϕ1 sinϕ0 +O(ϵ4), (10.5)

we have from (10.1a10.1a),

O(1) : ϕ′0 = cosϕ0, (10.6)

O(ϵ2) : ϕ′1 + ϕ1 sinϕ0 = −ϕ′′′0 , (10.7)

O(ϵ2n) : ϕ′n + ϕn sinϕ0 = −ϕ′′′n−1 + . . . (10.8)

At leading order, we have

ϕ0 = −π
2
+ 2 arctan es. (10.9)

Note that this solution satisfies the necessary boundary conditions ofNote that arctanu =
i
2
log

(
u+i
u−i

)
ϕ0 → ±π/2 as s → ±∞. Crucially, we note that the leading-order
solution is singular at those singularities of arctan es function, which
occur at

s = σk = (2k + 1)πi/2 (10.10)

for k ∈ Z. The two closest singularities to the physical free surface (the
real axis) are at s = σ± = ±πi/2.

At next order, we have

ϕ1 = −(2 + s− 2 tanh s+ C) sech s, (10.11)

where the constant of integration, C, is left undetermined at this stage.
Notice that ϕ1 → 0 as s → ±∞ and hence the perturbative solution
at this stage generically satisfies the boundary condition regardless of
the choice of C (which fixes the origin). It can furthermore be shown
[Kruskal and SegurKruskal and Segur, 19911991] that a solution can be determined at every
order that satisfies the boundary conditions.
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As we have noted, the leading-order solution (10.910.9) has logarithmic
singularities at s = σk = (2k + 1)πi/2 for k ∈ Z. At next order, ϕ1
depends on ϕ′′′0 and hence we expect near s = σk,

ϕ1 ∼ c(s− σk)
−2, (10.12)

for some constant c. This pattern continues, with each subsequent order
increasing the effect of the singularity from the previous order. In the
limit n→ ∞, we expect factorial-over-power divergence of the form

ϕn ∼ Q(s)Γ(2n+ γ)

[χ(s)]2n+γ
. (10.13)

Substitution into (10.810.8) gives[
−(χ′)3QΓ(2n+ γ + 1)

χ2n+γ+1
+

Γ(2n+ γ)

χ2n+γ

{
3χ′χ′′Q+ 3(χ′)2Q′

}]
+

[
−χ

′QΓ(2n+ γ + 1)

χ2n+γ+1
+
Q′Γ(2n+ γ)

χ2n+γ

]
= sinϕ0

QΓ(2n+ γ)

χ2n+γ
+ . . .

(10.14)

We divide by Γ(2n+ γ + 1) and use the fact that

Γ(2n+ γ)

Γ(2n+ γ + 1)
∼ 1

2n
+O(1/n2). (10.15)

Then at leading order as n→ ∞, we obtain an equation for the singulant
function:

(χ′)3 + χ′ = 0. (10.16)

Thus the singulant functions that correspond to the singularity-generating
divergences at s = σk are given by

χ(s) = ±i(s− σk), (10.17)

where σk are those singularities up and down the imaginary axis given
by (10.1010.10).

Stokes lines of the crystal growth problem

As noted in the Universality Rules (chapter 99), Stokes lines are
given by locations s ∈ C where Imχ = 0 and Reχ ≥ 0. Focusing
on the nearest singularities, we see that for σ+ = πi/2, considering
the singulant with χ+ = i(s − σ+) results in a Stokes line that
follows the imaginary axis and intersects the origin, s = 0.

Similarly, the singularity σ− = −πi/2 has corresponding Stokes
line with χ− = −i(s− σ−) tending upwards along the imaginary
axis. The two discussed Stokes lines are sketched in fig. 10.210.2.

At next order, we obtain an equation for Q, which yields

Q′

Q
=

1

2
sinϕ0 =

1

2
tanh s, (10.18)
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Figure 10.2: Stokes lines for the crystal growth problem. The Stokes lines and
singularities have been horizontally shifted slightly for visibility.

once the function for ϕ0 in (10.910.9) is used. Thus we obtain that

Q = Λ
√
cosh s, (10.19)

and the late terms are given by

ϕn ∼ Λ
√
cosh sΓ(2n+ γ)

[±i(s− σk)]2n+γ
=

Λ(−1)n
√
cosh sΓ(2n+ γ)

(s− σk)2n+γ
. (10.20)

It remains to determine γ and the constant Λ. These are done by
matching near the singularities.

10.2 matching near the singularity

Let us focus on the nearest singularity in the upper half-plane, σ = πi/2;
the analysis is analogous for other singularities. Firstly, we have the
fact that

ϕ1 ∼ c(s− σ)−2, (10.21)
√
cosh s ∼ eπi/4(s− σ)1/2, (10.22)

for some constant c. Then in the limit that s→ σ, the late terms follow

ϵ2nϕn ∼ ϵ2n
Λ(−1)neπi/4(s− σ)1/2Γ(2n+ γ)

(s− σ)2n+γ
,

= O
(
ϵ2n(s− σ)1/2−2n−γ

)
,

(10.23)

which must be chosen to match the order of ϵ2ϕ1 at n = 1. Hence we
conclude that

γ = 1/2. (10.24)

It remains to solve for Λ, and this must be done numerically. First,
the size of the inner region can be guessed by examining the required
size of O(s − σ) so that (10.1110.11) is O(1). With γ = 1/2, we see that
s− σ = O(ϵ) is the inner region scaling. Thus let us set

s− σ = ϵz, (10.25)
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for the inner-region coordinate, z = O(1). Next, we examine the
leading-order solution (10.910.9) in the limit s→ σ, noting that

ϕ0 ∼ −π
2
+ i log(2/ϵ)− i log(−z) +O(ϵ2), (10.26)

so we shall set

ϕ(s) = −π
2
+ i log

(
2

ϵ

)
− iψ(z). (10.27)

Converting cosϕ to the equivalent expressions with complex expo-
nentials, and then using (10.2510.25) and (10.2710.27) in (10.1a10.1a), we obtain after
simplification

ψ′′′ + ψ′ = −e−ψ +
ϵ2

4
eψ, (10.28)

and hence seeking the leading-order inner solution, ψ ∼ ψ0, we have

ψ′′′
0 + ψ′

0 = −e−ψ0 . (10.29)

Returning to (10.2310.23) and using the inner-region scaling (10.2510.25), we
have

ϵ2nϕn ∼ Λeπi/4Γ(2n+ 1/2)

z2n
, (10.30)

which must be matched by Van-Dyke’s rule to the outer limit of the
inner expansion. This hints that we should expand:

ψ0 ∼ log(−z) +
∞∑
n=1

An
z2n

, (10.31)

in the limit that z → ∞.
However, this is almost as far as we are able to go analytically.

When we substitute (10.3110.31) into (10.2910.29), we see that although the
linear left-hand side can be written into a form that makes extracting
the order-by-order values of z−2n possible, the transcendental nature of
the e−ψ on the right-hand side makes it impossible to write down an
explicit recursion relation for An.

Nevertheless, the first few orders can be derived by hand, and these
yield, for A1 to A5:

(Ak) =

{
2,−50

3
,
6104

15
,−6197236

315
,
497432416

315
, . . .

}
. (10.32)

The alternating-sign divergent nature of the coefficients is clear.
Matching (10.2310.23) to (10.3110.31) and using (10.2710.27), we see that,

−iAn ∼ Λ(−1)neπi/4Γ(2n+ 1/2), (10.33)

and hence we may calculate Λ by numerically calculating

Λ = e−πi/4 lim
n→∞

An(−1)n+1

Γ(2n+ 1/2)︸ ︷︷ ︸
bn

. (10.34)

A numerical script to compute the approximation to Λ using terms of
An is given in below. We find that

Λ = e−πi/4Ω, (10.35)

where Ω ≈ 1.354.
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Numerical approximation of Λ

With N = 50, the last value returned is b50 ≈ 1.354. However, the
convergence can be accelerated using Richardson’s extrapolation.
For example, with the implementation shown in the script, the
extrapolated value of

bn ≈ 1.354 (10.36)

is obtained, correct to the given digits.

Clear [A, b ] ;
M = 50 ;
p s i [ z ] = Log[−z ] + Sum[A[ n ] / z ˆ(2 n) , {n , 1 , M} ] ;
eqn = psi ’ ’ ’ [ z ] + ps i ’ [ z ] + Exp[− p s i [ z ] ] ;
Do [

A[ k ] = A[ k ] / .
F i r s t [ So lve [ S e r i e s C o e f f i c i e n t [ eqn , {z , I n f i n i t y , 2∗k +

1} ] == 0 ,
A[ k ] ] ] ,

{k , 1 , M} ] ;
Table [A[ k ] , {k , 1 , 5} ]
b = Table [A[ k ]∗(−1) ˆ(k + 1) /Gamma[2 k + 1/2 ] , {k , 1 , M} ] ;
Q0 [ n , NN ] :=

Sum[ b [ [ n + k ] ] ∗ ( n + k) ˆNN∗(−1) ˆ(k + NN)/ Fac t o r i a l [ k ] /
Fa c t o r i a l [NN − k ] , {k , 0 , NN} ] ;

qb1 = Table [N[Q0 [ k , 1 ] ] , {k , 1 , M − 1 } ] ;
qb2 = Table [N[Q0 [ k , 2 ] ] , {k , 1 , M − 2 } ] ;
qb3 = Table [N[Q0 [ k , 3 ] ] , {k , 1 , M − 3 } ] ;
L i s tP l o t [{b , qb1 , qb2 } ]
Last [ b ] // N
Last [ qb1 ] // N
Last [ qb2 ] // N
Last [ qb3 ] // N

Listing 10.1: Mathematica code to numerically solve for the value of Λ.

The behaviour of the coefficients bn is shown in fig. 10.310.3, along
with the series with one application of Richardson’s extrapolation.
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Figure 10.3: Behaviour of the coefficients bn in (10.3410.34) for the first fifty terms
(filled circles). Also shown are the coefficients with one application of Richard’s
extrapolation applied (stars). The values converge to 1.349 . . . shown dashed.
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10.3 stokes switching

Optimal truncation is found to be∣∣∣∣ϵ2N+2ϕN+1

ϵ2NϕN

∣∣∣∣ ∼ 4ϵ2N2

|χ|2 ∼ 1 (10.37)

so we select

N =
|χ|
2ϵ

+ ρ, (10.38)

where ρ is bounded.
We optimally truncate

ϕ =
N−1∑
n=0

ϵ2nϕn +RN . (10.39)

Substituting into (10.1a10.1a), we obtain to leading-order for the remainder
equation:

LRN ≡ ϵ2R′′′
N +R′

N +RN sinϕ0 ∼ −ϵ2Nϕ′′′N−1. (10.40)

Note that ϕ′′′N−1 ∼ −ϕ′N , so that this can be written as

LRN ∼ ϵ2N (−χ′)Q(s)Γ(2N + γ + 1)

[χ(s)]2N+γ+1
. (10.41)

Crucially, we note that Qe−χ/ϵ is a solution to the homogenous equation
LRN = 0. Consequently, we set the ansatz

RN (s) = S(s)Q(s)e−χ(s)/ϵ, (10.42)

and seek to develop an equation for S as the Stokes line is crossed.
When substituting (10.4210.42) into (10.4110.41), the terms that are proportional
to S on the left hand-side sum to zero by design; at leading order, only
terms that produce the highest powers of 1/ϵ remain, yielding

LRN ∼ −2
dS
ds
Qe−χ/ϵ. (10.43)

We change to a coordinate frame local to the Stokes line and consider
the rate-of-change of S as the Stokes line, Imχ = 0, Reχ ≥ 0 is crossed.
Letting χ = reiθ, we have

d

ds
=

dχ

ds

d

dχ
=
χ′

iχ

d

dθ
. (10.44)

Combining (10.4110.41) with (10.4310.43), we have

dS
dθ

∼ ϵ2N
(
i

2

)
Γ(2N + γ + 1)eχ/ϵ

χ2N+γ
. (10.45)

Now a simplification to the Gamma function using Stirling’s ap-
proximation similar to that of (6.236.23) is applied. Using the optimal
truncation point (10.3810.38), we find that

Γ(2N + γ + 1) ∼
√
2π

(r
ϵ

)2N+γ+1/2 [
e−r/ϵ(1 +O(ϵ)

]
. (10.46)
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Substitution into (10.4510.45) gives

dS
dθ

∼
(
i

2

)√
2π

r1/2

ϵγ+1/2

e−r/ϵeχ/ϵ

eiθ(2N+γ)
. (10.47)

The exponentials are now combined. The key factor is in the numerator,
with e−(r+χ)/ϵ, which is typically exponentially small unless χ = reiθ is
maximised, near θ = 0. Note that

−r
ϵ
+
r

ϵ

[
1 + iθ − θ2

2
+O(θ)3

]
−iθ

[r
ϵ
+ γ + 2ρ

]
∼ −rθ

2

2ϵ
+O(θ), (10.48)

so the dominant balance occurs if θ = O(
√
ϵ). We thus re-scale θ =

√
ϵϑ,

and obtain
dS
dϑ

∼
(
i

2

) √
2πr

ϵγ
e−rϑ

2/2. (10.49)

Integrating the above quantity from ϑ = −∞ to ϑ = ∞ then yields the
result that the jump in S about the Stokes line is[

S
]
∼

(
i

2

) √
2πr

ϵγ

∫ ∞

−∞
e−rϑ

2/2 dϑ =

(
i

2

) √
2πr

ϵγ

√
2π

r
=
πi

ϵγ
. (10.50)

Altogether, we have shown that the jump in the optimally truncated
solution across the Stokes line from the singularity at σ = πi/2 is given
by

ϕexp ∼ πi

ϵγ
Λ
√
cosh se−χ/ϵ. (10.51)

Using the fact that γ = 1/2, Λ = Ωe−πi/4 from (10.3510.35), and χ =
i(s− πi/2), we have the final prediction of

ϕexp ∼ π

ϵ1/2
(1.35 . . .)eπi/4

√
cosh se−χ/ϵ. (10.52)

Author’s note I

The above is a very finicky calculation that we have not yet managed
to match the original, as presented in Chapman et al.Chapman et al. [1998b1998b].
Their result is that the contribution from the s = πi/2 singularity
is

∼ − Λ̃πe−πi/4
√
cosh se−π/(2ϵ)e−is/ϵ

ϵ1/2
, (10.53)

where they later find Λ̃ = Ωeπi/4 with Ω ≈ 1.35. So we are a factor
of −eπi/4 off. It is plausible that this issue arises during the inner
matching procedure.

Author’s note II

One route to bypass the painful optimal truncation and Stokes-line
smoothing procedure is to apply the formal Borel re-summation
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method presented previously. This appears in the exercise leading
to (9.169.16).

10.4 variations of the crystal growth problem

There are variations of the classic geometric crystal growth problem
that are worth discussing.

The first is the case of anisotropic crystal growth problem, as
presented in Kruskal and SegurKruskal and Segur [19911991], Chapman et al.Chapman et al. [1998b1998b], which
modifies the differential equation to

ϵ2ϕ′′′ + ϕ′ =
cosϕ

1 + α cos(4ϕ)
. (10.54)

In this case, the introduction of the anisotropic parameter, 0 < α < 1
mainly changes the singularity structure in the complex plane. Now,
there are singularities in each of the four quadrants. These singularities
coalesce together, in pairs, at the previous locations, s = ±πi/2 in
the limit α → 0, while in the limit α → 1 they descend to the real
axis. Stokes lines, however, are still linear; the difference with the
new arrangement of singularities is that there now exists a countably
infinite number of ϵ values where it is possible the exponentially-small
switchings are confined to a local region around s = 0.

10.5 exercises

1. By setting f = Aems into (10.210.2), develop the characteristic poly-
nomial for m = m(ϵ) and determine the leading-order behaviour
of the respective roots for small values of ϵ. Conclude with the
form (10.310.3).

2. Study the application of Richardson’s extrapolation to accelerate
the series convergence of the bn series. In particular, with the
assumption that

bn ∼ Q0 +
Q1

n
+O(1/n2), (10.55)

we use the formula

Q0

N∑
k=0

bn+k(n+ k)N (−1)k+N

k(N − k)
+O

(
1

nN+1

)
. (10.56)
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