
on the universality of exponential
asymptotics

9This chapter will be left somewhat unfinished until later; I need to
decide what are the crucial details to mention! For the most part,
the reader can proceed to the later chapters, and this chapter can be
re-edited and back-referenced as we continue deeper in the material.
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The practitioner understands that, at least concerning the practical ap-
plication of asymptotic analysis, a great many problems in applications
are studied using the same ‘recipe’: given the typical perturbative prob-
lem involving a small parameter ϵ, one attempts to develop solutions in
an expansion in powers of ϵ. All problems involve such a recipe—but
all problems are also different!

In relation to exponential asymptotics, there are similar recipes and
universalities in the typical problems. In this chapter, we attempt to
provide a succinct guide to the general procedure. Significant liberties
will be taken, but whenever possible, we shall mention example problems
where the rules may need to be modified.

9.1 formal borel summation

The following is a brief note on the formal manipulation of the tail
of the divergent series, demonstrating the association of factorial-over-
power divergence with the emergence of exponentials. This serves
well to bypass the more heavy-handed route of Stokes-line smoothing
introduced previously.

Consider the expression of the remainder, where we assume that the
late terms are entirely approximated by a factorial-over-power form:

RN (z) ∼
∞∑
n=N

ϵnQ(z)Γ(n+ γ)

χn+γ
. (9.1)

We replace the gamma function by its integral definition:

RN (z) ∼
∞∑
n=N

ϵnQ(z)

χn+γ

∫ ∞

0
e−ttn+γ−1 dt

=
Q(z)

ϵγ

∞∑
n=N

∫ ∞

0
dt · e

−t

t

(
ϵt

χ

)n+γ
.

(9.2)

The assumption is made that that operations of summation and inte-
gration can be interchanged:

RN (z) ∼
Q(z)

ϵγ

∫ ∞

0
dt

e−t

t

∞∑
n=N

(
ϵt

χ

)n+γ
, (9.3)
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and we shall not think too carefully about the convergence of the
geometric sum:

RN (z)
Q(z)

ϵγ

∫ ∞

0
dt

e−t

t

(ϵt/χ)N+γ

1− ϵt/χ
. (9.4)

It is convenient now to set ϵt = w and hence the integral can be
written as

Rn(z) ∼
Q(z)

ϵγ

∫ ∞

0

wN+γ−1

χN+γ

e−w/ϵ

1− w/χ
dw. (9.5)

Now we consider an initial choice of z such that the singularity in
the w-plane, which happens at w = χ(z), lies in the lower half-plane.
The integration along the domain of w ∈ [0,∞) proceeds as usual, and
integration by parts will essentially recover the algebraic corrections
from the asymptotic expansion. However, if z is analytically continued
so that the pole at t = χ(z) crosses the positive real w-axis, then we
see that a residue contribution must be included which is equivalent to
the local integral:

∼ Q(z)

ϵγ
1

χN+γ

∮
(−χ)wN+γ−1 e

−w/ϵ

w − χ
dw =

2πiQ(z)

ϵγ
e−χ/ϵ. (9.6)

This is a demonstration through formal re-summation that if the
late terms of an asymptotic expansion are given by Q(z)Γ(n+ γ)/χn+γ ,
then they are associated with the Stokes line switching given above.

9.2 the factorial-over-power methodology

Consider a generic nonlinear differential equation on y = y(z):

N (z, y, y′, y′′, . . . ; ϵ) = 0. (9.7)

Observations of the universality:

1. Singular asymptotic expansions diverge according to a factorial-
over-power.

2. There exists Stokes lines. These are given where one expansion
reaches peak exponential dominance over another.

3. Across Stokes lines, there is the Stokes Phenomenon.

Definition 9.1 (The Darboux property)
Consider a singular differential equation for y(z) in the limit ϵ→ 0. If
the regular perturbative expansion can be written as111We have given a specific ex-

ample where the perturbative ex-
pansion proceeds in powers of
ϵ. In cases where it proceeds
in powers of, for instance ϵ2

this will modify the factoril-over-
power form of the divergence.
See examples in later chapters.

y(z) ∼
∞∑
n=0

ϵnyn, (9.8)

then in the limit n→ ∞, the divergence takes the form of a factorial-
over-power:

yn ∼ AΓ(n+ γ)

χn+γ
, (9.9)

where χ, A, and γ are in general functions of z ∈ C.
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Refs: DingleDingle [19731973], Chapman et al.Chapman et al. [1998b1998b]

Definition 9.2 (Stokes lines)
Consider two asymptotic approximations for (9.79.7)

y1 = (A0(z) + ϵA1(z) + . . .) e−χ1(z)/ϵ,

y2 = (B0(z) + ϵB1(z) + . . .) e−χ2(z)/ϵ.
(9.10a)

A Stokes line consists of a curve, γs ∈ C, such that, when one asymptotic
dominant expansion, say y1 is analytically continued across γs, the sub-
dominant expansion switches on (according to the Stokes Phenomenon).
In this case, we write

y1
y1>y2−−−−−−−→ y1 + S(z)y2. (9.11)

This occurs when

Im[χ1](z) = Im[χ2](z) Re[χ1](z) ≥ Re[χ2](z). (9.12)

Definition 9.3 (Optimal truncation)
The rule-of-thumb for optimal truncation is that it occurs where adjacent
terms of the asymptotic sequence is approximately equal. Thus for the
series (9.89.8), this is the point n = N where∣∣∣∣ ϵNyN

ϵN−1yN−1

∣∣∣∣ ∼ 1. (9.13)

In specific cases it can be justified a priori Berry and HowlsBerry and Howls 19901990, BerryBerry
1991b1991b, Costin and KruskalCostin and Kruskal 19991999.

Definition 9.4 (Stokes smoothing)
Stokes smooth typically occurs in the form of an error function switching.

9.3 further interesting and subtle effects

• Stokes lines have finite width and at large distances from the
singularity, this finite-width property can cause Stokes lines to
intersect and interact. It is possible for Stokes lines running
parallel or asymptotic to the real axis to interact with the real
axis at large distances [KingKing, 19981998, Chapman and KingChapman and King, 20032003].

• Stokes lines generated by asymptotically close singularities can
be viewed as a single Stokes line from far away, but require
the resolution of complicated asymptotics near the singularities
[Trinh and ChapmanTrinh and Chapman, 20152015].

• Crossing Stokes lines are often associated with: (i) the higher-
order Stokes Phenomenon; (ii) the appearance of Stokes lines
from singularities that are not present in any low-order term; (iii)
Stokes lines that stop at a point.

• The factorial-over-power ansatz is not universal [Trinh and ChapmanTrinh and Chapman,
20152015].

• The error-function smoothing is not universal [ChapmanChapman, 19961996].
• Stokes lines can ‘pile-up’. The dominant contribution of Stokes

lines near the origin is not from the nearest singularity but from
a clustering singularities at infinity [Chapman et al.Chapman et al., 20132013].
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9.4 exercises

1. Given an asymptotic expansion of the form

y(z) ∼
∞∑
n=0

ϵ2nyn(z), (9.14)

suppose that the late terms diverge in the form of

yn(z) ∼
Q(z)Γ(2n+ γ)

[χ(z)]2n+γ
, (9.15)

where γ is constant. Demonstrate using the formal Borel summa-
tion procedure that the above divergent series is associated with
an exponentially-small switching of the form

yexp ∼ πi

ϵγ
Q(z)e−χ(z)/ϵ. (9.16)

Therefore, the main difference due to the expansion going up in
powers of ϵ2, and also the Γ(2n + γ) trend is a halving of the
prediction (9.69.6).
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