
the higher-order stokes phenomenon

8This chapter is left somewhat unfinished. The higher-order Stokes
phenomena (HOSP) is not so important until some of the more
complex Stokes line problems in later chapters.
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In the previous few chapters, we encountered the situation whereby
a base asymptotic approximation switches on an exponentially-small
term across Stokes lines. In the case of the exponential integral, this
was a base series of phase zero; thus the asymptotic expansion for
y ∼ y0 in (6.26.2) switches on e−χ/ϵ in the limit ϵ → 0. In the case of

the second-order Airy equation, this was e−2/3x3/2 switching on e2/3x
3/2

in the limit |x| → ∞ as in (7.187.18). Both of these cases involve only a
switching between pairs of asymptotic expansions. However, higher-
order problems allow for the possibility of more than two exponential
interactions, and this produces a curious issue.

Consider, for example, a problem where three exponentials are
present, say e−χ1/ϵ, e−χ2/ϵ, and e−χ3/ϵ, with the singulant functions,
χi considered to be functions of z ∈ C. In the z-plane, consider
the situation that occurs if the Stokes lines cross in the following
configuration:

1 > 2

2 > 3

Stokes crossing point (SCP)

start

Figure 8.1

Begin at the point marked ‘start’ and let us assume that in this
region the solution is approximated by e−χ1/ϵ. If we analytically continue
anti-clockwise in a circle, we see the following transitions:

A1e
−χ1/ϵ 1>2−−→ A1e

−χ1/ϵ +A12e
−χ2/ϵ,

2>3−−→ A1e
−χ1/ϵ +A12e

−χ2/ϵ +A23e
−χ3/ϵ,

1>2−−→ A1e
−χ1/ϵ +A23e

−χ3/ϵ,

2>3−−→ A1e
−χ1/ϵ +A23e

−χ3/ϵ (same as above; χ2 not present).

where all the prefactors are regarded as functions of z. Thus, by the
time we return to the start point, both exponentials e−χ1/ϵ and e−χ3/ϵ

are present and there is an inconsistency. Note that we have drawn a
section of the 2 > 3 Stokes line as dashed as it is an irrelevant Stokes irrelevant Stokes line
line—there is no switching since the exponential e−χ2/ϵ is not present.
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However, for a different choice of start point or starting exponential,
this line may be relevant.

At this point, there are two possibilities that seem plausible: (i) there
is an additional Stokes line unaccounted for that might, for instance,
switch off the e−χ3/ϵ contribution; or (ii) one of the illustrated Stokes
lines should not be be there. This thought experiment illustrates the
fact that, when two Stokes lines cross at the Stokes crossing point
(SCP), with the two Stokes lines possessing a shared exponential, there
may be additional subtleties that result.

In fact, the answer that occurs in certain situations is a combination
of the two items above. Let us propose that there is, in fact, an
unaccounted singularity that generates a missing 1 > 3 Stokes line; this
missing Stokes line must travel through the intersection point in order
to resolve the inconsistency. For example, we might propose:

1 > 2

2 > 3

1 > 3

start

Figure 8.2

This configuration does not work, either, because in general whatever
is switched on across one section of 1 > 3 is switched off by the other,
and the original issue of an orphaned exponential A23e

−χ3/ϵ remains.

Instead, in this chapter, we demonstrate an example where the
unusual alternative configuration occurs:

1 > 2

2 > 3

1 > 3

Figure 8.3

Therefore, the 1 > 3 Stokes line, in fact, disappears along one of
its sections! This unusual situation, where the activity of a Stokes line
changes across a Stokes crossing point is associated with the higher-
order Stokes Phenomenon. We say that a portion of the 1 > 3 line is
inactive. In this chapter, we shall make this phenomenon transparentinactive Stokes line
by a steepest descent analysis of a toy problem.

Before presenting this, it sufficient for us to provide a hint of the
reason why such a situation can occur. Consider a steepest descent
analysis of an integral of the form

I(z) =

∫
C
e−χ(s; z)/ϵ ds,

in the limit ϵ → 0, and where there are three saddle points in the
complex s-plane, say at s = s1, s2, s3. At a particular value of the
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parameter z = z∗, it can be the case that

Im[χ(s1; z
∗)− χ(s3; z

∗)] = 0, Re[χ(s1; z
∗)− χ(s3; z

∗)] ≥ 0.

Normally, this would indicate that z∗ lies on a Stokes line in the z-
plane, and there exists a path of steepest descent between saddle points
s1 and s3; here, the saddle-point contribution from s1 is expected to
switched-on the contribution from s3. However, this local condition is
not sufficient to guarantee such a path—and indeed there may be no
such path depending on the global configuration of the χ function in
the s-plane. This is essentially the issue—the local Stokes line criterion
fails because the integration topology is more complicated.

8.1 the pearcey integral

This presentation uses an integral related to the Pearcey function in
order to illustrate the higher-order Stokes Phenomenon, and follows
a development shown in Howls et al.Howls et al. [20042004]. The Pearcey function
forms one of the canonical functions of catastrophe theory (and one of
the first seven catastrophe geometries, cf. Poston and StewartPoston and Stewart [20142014])
and arose in Pearcey’s investigation of electromagnetic fields near a
cusp [PearceyPearcey, 19461946]. More details can be found in the investigations
of Connor and CurtisConnor and Curtis [19821982], Connor et al.Connor et al. [19831983] to investigate the
numerical approximations.

Consider the integral with ϵ > 0,

I(z) =

∫
C
e−f(s; z)/ϵ ds, (8.1)

with

f(s; z) = −i

(
1

4
s4 +

1

2
s2 + sz

)
. (8.2)

The contour C is defined as a contour that starts at ∞ exp(−3
8πi) and

ends at ∞ exp(18πi). The parameter in (8.28.2) is defined to be complex-
valued, z ∈ C.

Our plan is to apply the method of steepest descents and seek a
deformation of C and subsequent asymptotic expansion of the integral
in the limit ϵ→ 0. There are three saddle points, located at f ′(s) = 0,
and we shall define the saddle points as

s = sn(z), where s3n + sn + z = 0, n = 0, 1, 2. (8.3)

Note that when z = 0, the saddle points lie at s0 = −i, s1 = 0, and
s2 = i. For other values of z, we shall index the three saddle points so
that they are a smooth analytic continuation of these values at z = 0.

Note that we can write re-write (8.28.2) as

f(z) =
1

4
zf ′(z)− i

4
z(z + 3a), (8.4)

so the height of the saddle points are given by

Fn(z) ≡ f(sn; z) = − i

4
sn(sn + 3z) for n = 0, 1, 2. (8.5)
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The paths of steepest descent that emerge from the saddle point
at s = sn are given by an equal phase condition and furthermore, a
condition that ensures that each point on the contour, s ∈ Cn, lies
downhill from the height of the saddle point:

Cn = {s ∈ C : Im[f(s)−f(sn)] = 0, Re[f(s)−f(sn)] ≥ 0}, n = 0, 1, 2.

An example of a path of steepest descent is shown in fig. 8.48.4 where the
intial contour is deformed through the lower most saddle point, s = s0
via curve C0.

●●

●●

●●

Figure 8.4: An example of
the deformation through sad-
dle point s0 and via contour
C0. This shows the s-plane at
the value of z = 0.61 + 0.2i.

As the value of the parameter, z, varies in the complex z-plane, the
saddle points will shift in the s-plane, and the set of relevant steepest
descent contours that we must deform the original contour, C, into may
change. We consider those special values of z ∈ C, where the steepest
descent contour through a saddle zi passes through a neighbouring
saddle, say zj , and hence the curve C is then deformed to Ci ∪ Cj .
These characterise the Stokes lines in the z-plane, and are given by:

Si>j = {z ∈ C : Im[Fj(z)− Fi(z)] = 0 and Re[Fj(z)− Fi(z)] ≥ 0},
(8.6)

where recall we have written Fj(z) = f(sj , z) to emphasise the depen-
dence on z. Notice in the above condition that the height at the saddle
zj , or more precisely the magnitude of the integrand, is characterised by
exp[−Re(Fj)/ϵ]. This magnitude is exponentially smaller than the cor-
responding magnitude from saddle zi, characterised by exp[−Re(Fi)/ϵ].
Thus the jth saddle lies downhill of the ith saddle and consequently, we
say that the exponential corresponding to the ith saddle switches-on
the exponential corresponding to the jth saddle across the Stokes line
Si>j in the z-plane.

In the z-plane, the Stokes lines originate from where Fi(z) = Fj(z),
and these critical points can be found as follows. First, two critical
points are characterised by points where two of the three saddles are
associated with a double root of the cubic equation. Here, sn = ±i/

√
3

and substitution into f(sn; z) = 0 yields

z± = ±
(

4

27

)1/2

i. (8.7)

It can be verified that the positive sign corresponds to where F0(z+) =
F1(z+) and the negative sign to F1(z−) = F2(z−). The last critical
point is verified to be at z = 0 and here F0(0) = F2(0).
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We now plot the three critical points and their associated Stokes
lines from condition (8.68.6), and this is shown in fig. 8.58.5. We see from
the diagram that, like the conceptual picture illustrated in fig. 8.28.2 there
is a Stokes crossing point (SCP). We consider the different contributing
exponentials that result when the parameter z is analytically continued
along the dashed path encircling the SCP. At the beginning of this
path, we assume that the solution is approximated by integration along
C0, as in fig. 8.48.4. So we write this conceptually as

I(z) = O(e−F0/ϵ) ∼ 0○ .

Next, as we analytically continue along the indicated path, we observe
that by the time the end of the path is reached, we have 0○ and 2○ .
There is an inconsistency. One sensibly concludes that either the set of
Stokes lines is incomplete, and there are additional Stokes lines present
that are unaccounted for, or some of the the previously predicted Stokes
lines are incorrect. The case turns out to be the latter, and in fact, the
solid blue line that lies to the left of the triple intersection point is an
inactive Stokes line. We now examine this more closely via the steepest
descent analysis.

0 > 11 > 0

0 > 22 > 0

1 > 22 > 1

z+ =
√

4/27i

z− = −
√

4/27i

z = 0

Figure 8.5: Stokes lines in
the z-plane. We consider
the Re(z) > 0 region, where
the switchings are all denoted
with solid lines. We ana-
lytically continue along the
curved dashed line beginning
with 0○ and by the time the
end of the arrow is reached,
0○ and 2○ , are expected to
be present, yielding an incon-
sistency.

8.2 a closer look at the steepest descent curves

We take a circular path around the Stokes crossing point, as shown
in fig. 8.68.6. The steepest descent contours in the s-plane are shown for
specific points. Observations include:
(a) Starting from the top, we have only the ‘0’ exponential.

(b–c) As we cross the 0 > 1 line, we turn on the ‘1’ exponential.
(d) However, at the line that was anticipated to be 0 > 2, no switching

occurs since 2 is not adjacent to 1. We call the 0 > 2 line here
inactive.

(e–f) We cross the 1 > 2 line and switching occurs.
(g–h) Again, 0 > 1 switching occurs, and now we only have 0, 2 present.

(i) This time the 0 > 2 line is active. We can see that 0 is adjacent
to 2 and now 2 is switched off.

(j) There is supposed to be a 1 > 2 Stokes line here. There is in the
sense that, had 1 been present, it would switch on/off 2. However,
in this case, the Stokes line is irrelevant.
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Figure 8.6: The z-plane is
shown centre, with the SCP ly-
ing at approximately a ≈ 0.61.
The analytically continue in a
circular route around the SCP.
The insets displayed around
the central picture show the
steepest descent curves in the
s-plane.

8.3 interpretation in the borel plane

Like for the analysis of the Airy equation in ??, it is possible to perform
a transformation from the original integration plane (the s-plane) to
the Borel plane (the u-plane) via u = f(s; z). This allows us to
visualise the switching of exponentials from within the u-plane, where
the steepest descent paths are much simpler and lie along Imu = const.
However, the complexity in the integration problem now appears in the
multi-valued structure of the integrand.

In this case, let us define u via

u = f(s; z) ≡ −i

(
1

4
s4 +

1

2
s2 + sz

)
. (8.8)

When we invert the above quartic equation and obtain values of s given
values of u, we obtain four branches. Thus, let us write

s ≡ Gi(u; z) = f−1(u; z), (8.9)

where G = Gi, i = 1, . . . 4 prescribes the four branches. Thus u is said
to lie on a Riemann surface with four Riemann sheets. The integral
(8.18.1) now becomes

I(z) =

∫
Cu

G′
i(u; z)e

−u/ϵ du =

∫
Cu

[
1

f ′(s = Gi(u; z); z)

]
e−u du.

(8.10)
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Note from the above form that the three saddle points in the s-plane,
where f ′ = 0, correspond to singularities in the integrand function in
the u-plane. There are thus three square-root branch points in the
Borel plane, ui(z) = f(si; z) that relate the four Riemann sheets.

For a given curve of integration, C, of the original integral (8.18.1), we
should consider its mapped image, Cu, which will lie on one of the four
possible Riemann sheets. However, for the following, it is simpler to
consider the choice of Cu consisting of a path of integration that runs
from u = ∞+ai, encircles a saddle point, and returns to u = ∞+ bi for
appropriately chosen a and b (which will be clear momentarily). This
choice is accompanied by choosing one of the possible (i ∈ {1, 2, 3, 4})
Riemann sheets that prescribes Gi in the integrand.

8.3.1 A visualised example

The above can be made clear with an example. Let us take z = 0.61+0.3i.
There are three saddle points in the s-plane, s = sj for j = 0, 1, 2, found
from (8.38.3), and these correspond to square-root branch points u = uj .
For the stated value of z, these are approximately given by

s0 = 0.32− 1.00i, s1 = −0.52− 0.17i, s2 = 0.20 + 1.17i

u0 = −0.55− 0.15i, u1 = −0.15 + 0.14i, u2 = 0.70 + 0.51i

With s0 chosen to be the saddle point in the lower right, we now
design a rectangular contour Cu, that encircles the point, u0, and that
lies on one of the four Riemann sheets. We shall designate this as the
‘central’ Riemann sheet and in the visualisations shown below, this
corresponds to the choice of s = G2(u; z)—note though that this is a
function of our relatively arbitrary labelling scheme for the Riemann
sheets.

In fig. 8.78.7 we show the central Riemann sheet. The rectangular
Cu contour of integration is shown bolded. The branch point u0 is
shown with the white circle. The light gray contours correspond to
Re(s) = Re(G2(u)). The branch cut from u = u0 is the thick black
line taken to the right. The cut structure of the light gray contours
show a discontinuity in G2(u), as expected, across the cut. Note that
in order to construct this plot, we must invert the function (8.88.8) in a
manner consistent with the desired branch structure—its computation
is non-trivial.
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Figure 8.7: z = 0.61 + 0.3 exp(πi/2). The central Riemann sheet, G2(u) is shown.
There is only a single branch point here, with u = u0. The contour Cu starts from
∞, loops around u0, and returns to ∞.

Next, in fig. 8.78.7, we show the original integration s-plane, with
the images of Cu. The three saddle points, s0, s1, s2 are shown as
circles, and the steepest descent trajectories through these points are
marked C1, C2, and C3. There are, in fact, four images of Cu found via
s = Gi(Cu). The contour in the lower right is precisely the one that
corresponds to the i = 2 Riemann sheet, G2(Cu).

C
1
C

2
C

3

C
4

Figure 8.8: z = 0.61 + 0.3 exp(πi/2). The central Riemann sheet, G2(u) is shown
left. There is only a single branch point here, with u = u0. The s-plane is shown
right, with the four images of Cu drawn.

Thus in the u-plane of fig. 8.78.7, we note that the steepest descent
deformation of Cu consists of the two horizontal line segments:

C(1)
u = {w + i Im(u0)

+, w = ∞ . . .Re(u0)}
C(2)
u = {w + i Im(u0)

−, w = Re(u0) . . .∞}.

In the s-plane, this corresponds to the choice of steepest descent contour
through s0, marked with C2 in fig. 8.88.8.

A better visualisation of the relationships between the Riemann
sheets is shown in the right illustration of ??. There are four planes
corresponding to the four Riemann sheets, Gi. The white circles corre-
spond to the three branch points {u0, u1, u2}. From each brach point,
there is a solid line showing the branch cut, and we have used vertical
lines to indicate how the Riemann sheets are connected. For instance,
analytic continuation across the branch cut from u0 on sheet G2 pro-
ceeds to sheet G1. Notice another key point, which is that not all three
branch points are present on a given Riemann sheet.

8.4 justification by the method of terminants

NB: My understanding of this is pretty tenuous. Primary source
appears to be from Berry and HowlsBerry and Howls [19911991], which was used as the
basis of Howls et al.Howls et al. [20042004], itself based on LangmanLangman [20052005]. These
techniques seem to go back to Howls’ PhD thesis (no copy available)
and then before that DingleDingle [19731973].
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Let us study an integral about a saddle point, z = zn, written as

I(n)(k) =

∫
Cn(θk)

dz g(z)e−kf(z), (8.11)

studied in the limit k → ∞. Above, we assume that Cn has been
deformed to the path of steepest descent through the saddle point at
z = zn, where f

′(z) = 0. Writing f(zn) = fn, then if z ∈ Cn, then

Re[k(f(z)− fn)] ≥ 0.

We now introduce the notation of

I(n)(k) =
1√
k
e−kfnT (n)(k), (8.12a)

T (n)(k) =
√
k

∫
Cn(θk)

dz g(z)e−k[f(z)−fn], (8.12b)

which essentially serves to localise the integration around the saddle
point.

The goal is to seek asymptotic expansions and their remainders
in the limit k → ∞. In most practical applications of the method of
steepest descent that we have used so far, only the first term of the
series is obtained. To develop higher-order terms, we use the (Borel)
transformation of

u(z) ≡ k[f(z)− fn].

Note that for each value of z on Cn, u is real and non-negative. Moreover,
for each value of u, except at u = 0, there are two values of z. We
assume that z = z−n (u) for the curve entering the saddle point, where u
runs from ∞ to 0; similarly z = z+n (u) for the curve leaving the saddle
point, with u running from 0 to ∞. Then changing to differentiation in
u, we have

T (n)(k) =
1√
k

∫ ∞

0
du e−u

{
g(z+(u))

f ′(z+(u))
− g(z−(u))
f ′(z−(u))

}
. (8.13)

8.5 analysis of the differential equation

Has this ever been done? It should be similar to MortimerMortimer [20042004],
Chapman and MortimerChapman and Mortimer [20052005], so you get the higher-order Stokes
Phenomenon via an additional approximation of the remainder terms.
Need to first convert Pearcey to an ODE though. Note that

d

dz

(
−f
ϵ

)
=

is

ϵ
,

then we have that

I ′′′(z) =
∫
C

(
is

ϵ

)3

e−f/ϵ ds.

We can then write

− is3

ϵ3
= − i

ϵ3
(
s3 + s+ z − s− z

)
=

1

ϵ3
f ′(s) +

i

ϵ3
(s+ z),
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and thus

I ′′′(z) = − 1

ϵ2

∫
C

d

ds

(
e−f/ϵ

)
ds+

i

ϵ3

∫
C
(s+ z)e−f/ϵ ds =

1

ϵ2
I ′ +

i

ϵ3
zI,

so we have the differential equation

ϵ3I ′′′(z) = ϵI ′(z) + izI(z), (8.14)

with appropriate boundary conditions so that the solution decays. Note
that we can verify that (8.148.14) returns to the integral equation using
Fourier transform in (7.87.8) and applying a similar procedure to the Airy
equation.

We can then apply the same methodology as the Airy equation. Set
I(z) = A(z)eS(z)/ϵ, where we find that

(S′)3 = S′ + z. (8.15)

We then set S = S0(z) and seek the differential equation for A(z) and
then expand

A(z) =
∑

ϵnAn(z). (8.16)

We would then find the 0 > 1 and 0 > 2 possible switchings by examining
the divergent series in A. Anyways, this would give us the standard
Stokes line switchings. But how do we predict the higher-order Stokes
Phenomenon? If it is analogous to Chapman and MortimerChapman and Mortimer [20052005], then
the divergence of the late terms An should involve a recurrence relation
that needs to be estimated using WKB techniques.
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