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George Gabriel Stokes’ struggle to understand what is today known as
the Stokes phenomenon is famously documented in his correspondence
with his fiancée, Mary Susanna Robinson.11 Stokes mentions an “integral 1“When the cat’s away the

mice may play. You are the cat
and I am the poor little mouse. I
have been doing what I guess you
won’t let me do when we are mar-
ried, sitting up till 3 o’clock in
the morning fighting hard against
a mathematical difficulty. Some
years ago I attacked an integral
of Airy’s, and after a severe trial
reduced it to a readily calculable
form. But there was one diffi-
culty about it which, though I
tried till I almost made myself
ill, I could not get over, and at
last I had to give it up and pro-
fess myself unable to master it∗.
I took it up again a few days ago,
and after a two or three day’s
fight, the last of which I sat up
till 3, I at last mastered it. I
don’t say you won’t let me work
at such things, but you will keep
me to more regular hours. A lit-
tle out of the way now and then
does not signify, but there should
not be too much of it. It is not
the mere sitting up but the hard
thinking combined with it. . . . . . ”
–March 1857, [StokesStokes, 19071907,
p. 62]

of Airy’s”—this corresponds to an expression previously derived by
Airy to describe the intensity of light near a caustic [cf. AiryAiry [18381838]].

In order to illustrate the nature of the phenomenon Stokes references,
we will find it more instructive to consider the differential equation
formulation instead.

Airy equation

The classic real-valued Airy equation is defined on the real x-axis,
with decaying conditions at infinity:

d2f

dx2
− xf = 0, (7.1a)

f → 0 as x→ ±∞. (7.1b)

The second-order differential equation has been defined with decay
conditions at infinity, and there the freedom to specify an additional
normalisation condition, say the value of f(0). This shall be specified
later.

In order to approximate solutions, series expansions must be used;
Stokes recognised that the typical convergent series expansions near
x = 0 are too slowly convergent to be useful [StokesStokes, 18511851], and it is
better to consider asymptotic expansions as |x| → ∞. In this limit, it
is convenient to re-scale x3/2 = z3/2/ϵ so that we have instead

ϵ2
d2f

dz2
− zf = 0, (7.2)

with ϵ→ 0.

With the intuition that solutions decay exponentially as z → ∞,
let us search for the solution in terms of a Liouville-Green or WKBJ
ansatz, f ∼ A(z)e−χ(z)/ϵ. Substitution into the above equation, we find
by matching to the first two orders of ϵ that

χ(z) = ±2

3
z3/2 and A(z) =

const.

z1/4
. (7.3)

Since the solution decays on the positive real axis by (7.1b7.1b), then the
WKBJ approximation is taken to be the single mode,

f(z) ∼ A
z1/4

e−
2
3
z3/2/ϵ. (7.4)
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where A ∈ R. In writing the functions z1/4 and z3/2 above, we have
consider the principal branches, with the branch cuts taken along
Arg z = 2π.

The WKBJ solution (7.47.4) fails to be valid at z = 0, known as the
turning point. However, let us consider approximating f with (7.47.4) as
z is analytically continued in the upper-half complex plane—from large
and positive values of z to large and negative z. As we do so, the WKBJ
solution remains well-defined, and there is no sign that it would fail to
approximate the true solution. Yet on the negative real axis, (7.47.4) now
evaluates to non-zero imaginary numbers, but we have assumed that
the differential equation is entirely real. There must be more going on.

For z < 0, let us assume that the solution is composed of the two
linearly independent components related to (7.37.3), and write

f(z) ∼ A
z1/4

e−
2
3
z3/2/ϵ +

B
z1/4

e
2
3
z3/2/ϵ. (7.5)

Thus we have assumed that the first exponential has the same prefactor,
A, as it did along the positive real axis. On the negative real axis, z3/2

is purely imaginary while z1/4 = eπi/4|z|1/4. The only way in which
(7.67.6) can be purely real and bounded as ϵ→ 0 with z < 0 is if B = iA.
Simplifying yields

f(z) ∼ 2A
|z|1/4 cos

(
2

3ϵ
|z|3/2 + π

4

)
, (7.6)

which thus predicts an real-valued oscillatory solution with an alge-
braically decaying amplitude.

Figure 7.1: The exact Ai(x)
(shown dashed) compared to
its leading-order asymptotic
approximation (7.77.7) devel-
oped as x → ±∞ (shown
solid).

Recalling that z = xϵ2/3, the Airy function of the first kind , Ai(x),
is defined so that the constant A = 1/(2

√
π). With this choice of

normalisation, the leading-order asymptotic approximation to the Airy
equation (7.1a7.1a) is f(x) = Ai(x), with

Ai(x) ∼


1

2
√
πx

1
4

e−
2
3
x
3
2 as x→ ∞,

1

2
√
πx

1
4

(
e−

2
3
x
3
2 + ie

2
3
x
3
2

)
as x→ −∞.

(7.7)

This leading-order approximation is shown in fig. 7.17.1, and we see that
the fit of the leading approximation to the exact value is excellent, even
for only moderately large values of x.

60 chapter 7 · the airy equation



By now, we recognise many of the telltale signs of exponential
asymptotics. Stokes had understood that the presence of the previously
subdominant exponential, with B in (7.67.6), was necessary based on the
boundary conditions on the negative real axis. But at the time, there
is no reason a priori to have believed that the secondary exponential
should be included once the leading-order solution (7.47.4) is analytically
continued from the right to the left. Indeed, if the secondary exponential
is included on the left, then it must have been switched-on at some
point during the path of continuation—and yet there is no clear sign
of this. This is the conundrum that occupied Stokes for a number of
years, as referenced in the earlier letter.

7.1 integral formulation of the airy equation

As with our examination in the previous chapter, it is advantageous
to consider the integral formulation of the Airy problem; indeed the
integral formulation was the original focus of Stokes’ work. We define
the Fourier and inverse Fourier transforms, respectively, as [HowisonHowison,
20052005, p. 146]:

Fourier and Inverse Fourier transforms

For a suitably smooth and integrable function f , we define the
Fourier transform, f̂ , and inverse Fourier transform of f via

f̂(k) =

∫ ∞

−∞
f(x)eikx dx, (7.8a)

f(x) =
1

2π

∫ ∞

−∞
f̂(k)e−ikx dk. (7.8b)

Using the standard results, applying the Fourier transform to (7.1a7.1a) We have that ˆf ′(x) = −ikf̂
established by integration by
parts, and x̂f = −if̂ ′(k), estab-
lished by differentiation under
the integral.

gives

i
df̂

dk
− k2f̂ = 0. (7.9)

Solving for f̂ and inverting gives

f(x) =
A

2πi

∫
C
exp

(
−s

3

3
+ sx

)
ds, (7.10)

for a constant of integration A, where we have transformed the inte-
gration variable from k to s = −ik. The infinite contour, C in (7.107.10)
must proceed from one sector of the complex s-plane to another, in
such a way that the integral converges as |s| → ∞. Hence we require
Re{s3} → ∞ as |s| → ∞. Letting φ = Arg s, we thus require that s
goes to infinity within one of the three possible sectors

−π/6 < φ < π/6, π/2 < φ < 5π/6, −5π/6 < φ < −π/2.
(7.11)

Hence C is chosen to start at infinity in one of the above sectors, and
end at infinity in one of the other two. Of the six possibilities, two
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linearly independent solutions can be defined by the contours shown in
fig. 7.27.2.

Figure 7.2: Two possible con-
tours for Airy equation solu-
tions. The contour C1 is used
to define the Ai function and
the contour C2 used to define
the Bi function. The hatched
wedges have interior angles of
2π/6.

When A in (7.107.10) is taken as A = 1, the contour that runs from
∞e−2πi/3 to ∞e2πi/3 defines the Airy function of the first kind, denoted
Ai22. Similarly, the contour running from ∞e−2πi/3 to ∞ defines the2Indeed the normalisation

constant mentioned following
(7.17.1) is chosen so that the solu-
tion agrees with the scaling of
the Ai function.

Airy function of the second kind, denoted Bi. In summary,

Ai(x) =
1

2πi

∫ ∞e
2πi
3

∞e−
2πi
3

exp

(
−s

3

3
+ sx

)
ds, (7.12a)

Bi(x) =
1

2πi

∫ ∞

∞e−
2πi
3

exp

(
−s

3

3
+ sx

)
ds. (7.12b)

Choices of contours from the other sectors may be transformed via a
rotation (e.g. x 7→ e2πi/3x) onto one of those used above, so we see that
the above two are the only linearly independent solutions. We shall
focus on Ai(x).

7.2 the method of steepest descents

We wish to apply the method of steepest descents in order to derive
the asymptotic approximation of the integral (7.12a7.12a) in the limit of
|x| → ∞. Writing x = reiθ and setting λ = r3/2, we have now the
integral

Ai(x) =
λ1/3

2πi

∫ ∞e
2πi
3

∞e−
2πi
3

eλw(t) dt, (7.13)

obtained from changing s = r1/2t, and where we have defined the
exponential argument

w(t) = teiθ − t3

3
. (7.14)

The only critical points of the integrand in (7.137.13) correspond to saddle
points, where w′(s) = 0, and thus

t = t± ≡ ±eiθ/2. (7.15)

Note that these are simple saddles, as w′′(t±) ̸= 0. Therefore, as
the argument of x changes in the Ai(x), the two saddle points rotate
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about the unit circle in the t-plane. The task is to determine how the
deformation of the contour C proceeds dependent on the configuration
of the saddle points.

The paths of steepest descent/ascent are specified by those values of
t ∈ C where Imw(t) is constant, hence those through the two saddles
are given by Imw(t) = Imw(t±). Letting t = u+ iv, this gives

−
(
u2v − v3

3

)
+ u sin(θ) + v cos(θ) = ±2

3
sin

(
3θ

2

)
. (7.16)

Thus, for a given Arg x = θ, contours of steepest descent through
t± are found by solving the implicit equation (7.167.16) along with the
requirement that the path descends in the appropriate manner (with
descent characterised by Rew(t) ≤ Rew(t±) = ±2

3 cos(3θ/2)).
For example, if θ = 0, the two saddle points lie along t± = ±1. The

original contour of integration, shown as C1 in fig. 7.27.2 will be deformed
to pass through t− = −1. This is shown in fig. 7.37.3. Our interest will be
in examining the change in the paths of steepest descent as θ changes.

Re t

Im t
Rew(t)

start in valley

end in valley

t = −1

t = 1

top down view

Figure 7.3: When θ = 0,
the two saddle points are lo-
cated at t = ±1, shown
in the contour plot of the
t-plane of the inset. The
path of integration should
then be deformed to pass
through t = −1. The three-
dimensional surface plot shows
(Re t, Im t,Rew(t)). Valleys
are shown hatched.

These paths are shown in fig. 7.47.4. The procedure is thus described
as follows:

Figure 7.47.4a We begin along the positive real x-axis, with θ ≡ Arg(x) = 0.
Then C should be chosen to pass through the saddle point at
t = t−; the standard computation of section 7.2.17.2.1 shows that the
contribution from this point is

Ai(x) ∼ Ae− 2
3
x3/2 , with A =

[
1

2x1/4
√
π

]
, (7.17)

once we have re-written in terms of x.
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(a) θ = 0 (b) θ = π/3 (c) θ = 2π/3

(d) θ = π (e) θ = 4π/3 (f) θ = 5π/3

Figure 7.4: These figures illustrate the steepest descent contours chosen to approxi-
mate the Airy integral. The contour should begin at ∞e−2πi/3 and end at ∞e2πi/3.
The saddle points are marked as nodes, and the thin lines are constant contours of
Re[w(t)], with dark regions corresponding to valleys. The thick solid line(s) indicate
the correct contours to follow. Dashed line(s) also indicate steep paths from the
saddles that are ultimately unused. The top three subfigures are for θ = 0, π/3, 2π/3
and the bottom three for θ = π, 4π/3, 5π/3.

Figure 7.47.4b As we analytically continue x = reiθ, note that for θ ∈ [0, 2π/3),
the topology of the integration contour remains the same, and so
(7.177.17) continues to hold throughout.

Figure 7.47.4c However at θ = 2π/3, the descending contour from t = t− passes
through the other saddle point at t = t+. Thus, immediately
thereafter, the approximation must include an exponentially small
contribution. We write this transition through θ = 2π/3 as

Ae− 2
3
x3/2 θ=2π/3−−−−−−−−→ Ae− 2

3
x3/2 + iAe 2

3
x3/2 . (7.18)

The fact that the Stokes phenomenon switches on the exponen-
tial with factor iA is certainly not obvious, but can be argued
either by examining the precise switching by steepest descents, or
alternatively arguing on the basis that the solution profile must
be oscillatory on the negative real axis.

Figure 7.47.4d–f Notice that now at θ = π, the previously subdominant contri-
bution from t = t+ becomes the same size as the contribution
from the original saddle, t = t−, as evident from the equal values
of Rew(t); this secondary contribution from t = t+ continues
increasing in size until reaching peak dominance at θ = 4π/3,
where the term in (7.177.17) now switches off.

As introduced in chapter 66, these switchings are occurrences of the
Stokes phenomenon. Since the paths of steepest descent are curves
of constant phase of w(t), then if Imw(t+) = Imw(t−), there exists a
steepest descent or ascent path from one saddle to the other—i.e. the
other saddle now has the possibility of ‘switching on’. This is equivalent
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to the condition

Im(e3iθ/2) = 0 =⇒ θ = 2nπ/3, n ∈ Z. (7.19)

For 0 ≤ θ < 2π this occurs when θ = 2π/3 and θ = 4π/3. Note that
in order for one saddle, say t− to switch on the second, then the path
must descend from the initial saddle to the second saddle. For the first
transition at θ = 2π/3, this corresponds to the descent condition of
Rew(t−) ≥ Rew(t+). Hence there is a Stokes line at θ = 2π/3 where
saddle t− switches-on t+. And there is a Stokes line at θ = 4π/3 where
t+ switches-off saddle t−.

We can equally define an Anti-Stokes line as the critical line where
both critical points contribute equally to the asymptotic expansion.
When such lines are crossed, the dominance of the two contributions is
exchanged. This must happen where Rew(t+) = Rew(t−), so where

Re(e3iθ/2) = 0 =⇒ θ = (2n− 1)π/3, n ∈ Z, (7.20)

and for 0 ≤ θ < 2π this occurs when θ = π/3, π, 5π/3.
Following an illustration proposed by Stokes, this procedure can

be imagined through the following representation. In fig. 7.57.5, we plot
three curves in the complex x-plane showing a representation of the
exponential scalings of the two relevant contributions from t− and t+.
The dashed curve is the unit circle. The solid curve, representing t−, is
1−∆cos(3θ/2)eiθ for θ ranging from 0 to 2π. The dash-dotted curve,
representing t+, is 1 + ∆cos(3θ/2)eiθ. For the illustration, ∆ = 0.3.

Figure 7.5: An illustration of the exponential dominance and sub-dominance shown
in the complex plane. The solid line corresponds to the initially exponentially
decaying solution from t− while the dash-dotted line corresponds to the initially
exponentially growing solution from t = t+. The dashed line is a unit circle.

Thus our study of Ai(x) begins with θ = 0 where the exponentially
decaying solution is marked with ‘a’ on the solid line. The exponentially
growing solution, marked ‘B’ is not present. As Ai(x) is analytically
continued to Arg x = θ = 2π/3, the exponential present reaches peak
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exponential dominance at the point marked ‘A’, at which the subdomi-
nant solution switches on at the point marked ‘c’. The switch occurs
again at ‘C’ and ‘b’.

7.2.1 Saddle contributions

We may verify the saddle-point contributions (7.177.17) and (7.187.18) derived
in the previous section. Near t = t∓, we have

w(t) ∼ ∓2

3
e

3iθ
2 ± eiθ/2(t± eiθ/2)2 + · · · . (7.21)

Consider the saddle at t−. Substituting the above expansion into the
integral expression (7.12a7.12a) and recalling that z = reiθ, we have

I− ∼ λ
1
3 e−

2
3
z
3
2

2πi

∫
near s−

exp
[
λeiθ/2(s+ eiθ/2)2 + · · ·

]
ds. (7.22)

Note we take the principal branch of the square root, and consider
the branch cut along the positive real axis, with 0 ≤ Arg z < 2π. The
integral will be evaluated along a small distance, say −δ to δ, along the
steepest descent path about the saddle. Ignoring the higher-order terms
not shown, we make the substitution (s+eiθ/2) = Reiν and approximate
the path segment by a straight line with constant ν to obtain

I− ∼ λ
1
3 e−

2
3
z
3
2

2πi

∫ δ

−δ
exp

[
λeiθ/2R2e2iν

]
eiν dR, (7.23)

where λ→ ∞.
To find the necessary value of ν, we use the steepest descent criterion

beginning at the saddle, where R = 0. This gives

Im[R2ei(2ν+θ/2)] = 0 =⇒ ν =
nπ − θ/2

2
where n ∈ Z,

Re[R2ei(2ν+θ/2)] ≤ 0 =⇒ n = ±1.

Thus, we set ν = π/2− θ/4 for the steepest descent path.
The last step is to extend the integration from −δ to δ in R to

−∞ and ∞. This introduces only exponentially small errors. Hence to
leading order in the approximation,

I− ∼ λ
1
3 e−iθ/4e−

2
3
x
3
2

2π

∫ ∞

R=−∞
e−λR

2
dR (7.24)

and thus via the Gaussian integration,

I− ∼ A(x)e−
2
3
x
3
2 , where A(x) =

1

2
√
πx

1
4

, (7.25)

matching (7.177.17) for the standard decaying exponential initially valid
for x > 0.

The analogous steepest descent procedure for the t+ saddle gives

I+ ∼ −e
2
3
x
3
2− iπ

2

2
√
πx

1
4

= iA(x)e−
2
3
x
3
2 , (7.26)

which returns the second term of (7.187.18).
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Remarks on steepest descent procedures

It is worth revising the steepest descent computation for the Airy
problem as compared to the exponential integral and complemen-
tary error function examples in chapter 66.

In the case of the error function integral in eq. (6.76.7),

y(z) = e−z/ϵ
∫ z

a

ef(t)/ϵ

t
dt where f(t) = t, (7.27)

the base asymptotic series is generated via the endpoint t = z.
Stokes phenomena arises when the endpoint t = z crosses the
positive real axis, switching on the residue contribution at t = 0.
This arises at Im f(z) = Im f(0) and Re f(z) ≥ Re f(0).

The case of the complementary error function led to the analysis
of (6.366.36)

ϕ(z) =

∫ ∞

z
ef(k)/ϵ

2
dk, where f(k) = −k2/2. (7.28)

The base series, again from the endpoint, k = z, switches on the
subdominant saddle contribution at z = 0 upon crossing the Stokes
lines. The Stokes line is given by those values where Im f(z) =
Im f(0) and Re f(z) ≥ Re f(0), i.e. the imaginary axis.

Finally, the Airy integral in this chapter from (7.137.13),

Ai(x) =
λ1/3

2πi

∫ ∞e
2πi
3

∞e−
2πi
3

eλw(t) dt, (7.29)

involves a base series generated from the saddle point t = t−; Stokes
phenomena occurs when this saddle switches on the subdominant
saddle t−. This occurs across the Stokes lines prescribed by those
values of z where

Imw(t−, z) = Imw(t+, z),

Rew(t−, z) ≥ Rew(t+, z).
(7.30)

This occurs across Arg z = 2π/3. A similar switching, with the
secondary saddle switching off the primary at Arg z = −2π/3.

7.3 exponential asymptotics for the airy equation

The asymptotic analysis of the Airy equation we have presented in
the previous section, done using the method of steepest descents, is
a classical demonstration and can be found in numerous references
(e.g. Bleistein and HandelsmanBleistein and Handelsman 19861986, Chap. 7). We now demonstrate
how the Stokes phenomena can be predicted from analysis of the
differential equation. To this end, let us return to (7.27.2) and re-label
f(z) = y(x).
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Airy equation (ϵ version)

A re-scaling of the classic Airy equation yields the singularly per-
turbed version:

ϵ2y′′ = xy, (7.31a)

y → 0 as x→ ∞, (7.31b)

to be studied in the limit ϵ→ 0.

Our task is to explain how the details of the Stokes phenomenon
(and Stokes line) can be explored via an analysis of the differential
equation itself. The steps we follow are similar to the procedure first
illustrated for the exponential integral in chapter 66, notably: (i) a
naive study of the traditional asymptotic expansion of the solution; (ii)
characterisation of the divergence of the series; (iii) an inner-region
analysis in order to determine key constants; and (iv) optimal truncation
and Stokes line smoothing.,

Again, we shall set the WKBJ ansatz y ∼ A(x)eS(x)/ϵ. Then at
leading order as ϵ→ 0, (S′)2 = x, so we select the branch of the square
root corresponding to exponential decay of the solution. This gives

S(x) = −2

3
x3/2. (7.32)

Above, we chosen the constant of integration so that the function S = 0
at the turning point, x = 0.

Let us now consider the full asymptotic expansion of the solution,
as given by

y ∼ A(x)e−
2
3
x3/2 where A(x) =

∞∑
n=0

ϵnAn(x). (7.33)

Substitution into (7.31a7.31a) now gives a differential equation for A:

ϵA′′ + [2S′A′ + S′′A] = 0. (7.34)

Setting the series expansion of A into the above equation give the
leading-order solution

2S′A′
0 + S′′A0 = 0 ⇒ A0 =

const.

(S′)1/2
=

1

x1/4
. (7.35)

Above, we have chosen to set the leading constant in A0 to be 1 for
convenience (note this will differ from the scaling for the Airy function33).3In order to precisely match

the Airy Ai function, from (7.77.7),
we would instead choose con-
stant in (7.357.35) so that A0 =
1/(2

√
πx1/4). Alternatively all

the results derived in this section
can be multiplied by this factor.

For n ≥ 1, we have at O(ϵn):

A′′
n−1 + 2S′A′

n + S′′An = 0. (7.36)

In fact, this linear recurrence relation can be solved exactly, but for
the moment, let us study the divergent properties of An as n → ∞.
Notice that the leading-order solution, A0, in (7.357.35) is singular at x = 0.
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Moreover, by the singular nature of the differential equation (on account
of ϵ multiplying the highest derivative), derivation of A1, A2, and so
forth will increase the severity of the singularity. In the limit n→ ∞,
we may verify inductively or a posteriori that

An(x) ∼
Q(x)Γ(n+ γ)

[χ(x)]n+γ
, (7.37)

for functions Q(x) and χ(x) to be determined and constant γ. Substitu-
tion of the factorial-over-power ansatz (7.377.37) into (7.367.36), and dividing
by QΓ(n+ γ)/χn+γ gives[

(χ′)2 −
(
2χ′Q′

Q
+ χ′′

)
Γ(n+ γ − 1)

Γ(n+ γ)
χ+

Q′′

Q

Γ(n+ γ − 2)

Γ(n+ γ)
χ2

]
2S′

(
−χ′ +

Q′

Q

Γ(n+ γ − 1)

Γ(n+ γ)
χ

)
+ S′′Γ(n+ γ − 1)

Γ(n+ γ)
χ = 0. (7.38)

We now expand the ratio of the Gamma functions using Stirling’s
formula. This gives at leading order as n→ ∞, χ′ = 2S′, or

χ(x) = 2S(x) = −4

3
x3/2, (7.39)

where we have imposed the requirement that χ = 0 at the singularity
x = 0. Continuing to O(1/n), we have

Q(x) =
const.

(χ′)1/2
=

Λ

x1/4
. (7.40)

where Λ is a constant to be determined.

7.3.1 Inner analysis

0

1

2

3

...

n

0

outerinner

Figure 7.6: Illustration of the
Van-Dyke matching procedure.
The circles indicates the individ-
ual terms of an ϵ-series expan-
sion. The number corresponds
to the index, i.e. i for Ai. As
x tends to the singularity, the
outer expansion recombines to
match the inner expansion. Note
that for the case of the Airy equa-
tion, the inner problem consists
of single non-ϵ-dependent prob-
lem. Thus there is only a single
term of an ϵ expansion.

Our task now is to determine the constants Λ and γ in the factorial-
over-power ansatz of (7.377.37). To begin, note that we have derived the
following form for the late terms:

An ∼ Λ

x1/4
Γ(n+ γ)

[−4
3x

3/2]n+γ
, n→ ∞ (7.41)

and it remains to determine the values of γ and Λ. Firstly, the choice
of γ ensures that the late-orders form above is consistent with the form
of A0 = O(x−1/4) in (7.357.35), which is the origin of the divergence. Thus
setting n = 0 above we see that

γ = 0. (7.42)

It now remains for us to determine the value of Λ by solving a
recurrence relation near the inner region at x = 0. In the outer region,
where x is away from x = 0, we have the asymptotic expansion of

Aout(x) ∼ A0(x) + ϵA1(x) + . . .+ ϵn
Q(x)Γ(n+ γ)

[χ(x)]n+γ
+ . . .
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In the case of the Airy equation, the exact forms of χ = −4
3x

3/2 and

Q(x) = Λ/x1/4 are known, and moreover, the functions are precisely
their leading-order asymptotic limits as x → 0. However, for the
nonlinear examples later presented in this book, more complicated
forms will be involved. As x → 0, the outer expansion breaks down,
with each term of the approximation merging to be of the same order.
This is shown schematically in fig. 7.67.6. For instance, the nth term
will be of the same order44 as the leading term if x = O(ϵ2/3), and this4Note that to balance the

nth term with the 0th term, we
have ϵn/[x1/4x3/2n] = O(x1/4).

indicates the boundary layer size.
The solution in the inner region is expected to be on the same order

as A0(x) = O(x1/4). Hence this motivates the re-scalings of

A(x) =
G(ζ)

x1/4
and ζ = −4

3

x3/2

ϵ
. (7.43)

The extra factor of −4/3 in the inner coordinate, ζ, is essentially so
that the late-term expression (7.417.41) yields exact powers of ζ.

The inner problem becomes

d2G

dζ2
+

dG

dζ
+

5G

36ζ2
= 0, (7.44)

subject to G→ 1 as z → ∞. Based on the form of the solution in the
outer region, we expect that G is expanded as a series in inverse powers
of ζ as ζ → ∞. Thus we substitute

G(ζ) =
∞∑
n=0

Gn
ζn

(7.45)

to obtain a recurrence relation:

Gn+1 =

(
n+

5

36

1

n+ 1

)
Gn, n ≥ 1 (7.46)

and this can be solved explicitly55 to yield the values of5Mathematica’s RSolve can
do this.

Gn =
1

2π

Γ(n+ 1/6)Γ(n+ 5/6)

Γ(n+ 1)
, (7.47)

where note G0 = 1. Indeed, the expansion of the leading-order solution
also diverges as it approaches the outer region.

In general and for more complicated problems, we would not expect
to be able to solve the recurrence relation exactly for all n. However, for
such problems, it is typically only necessary to estimate the divergence
of the series (7.457.45) as n → ∞. A direct numerical calculation yields
fig. 7.77.7.

In our case, we can verify by Stirling’s approximation66 that6In the limit that |z| →
∞, Stirling’s approximation is
that Γ(z) ∼

√
2π exp(z) exp[(z−

1/2) log z].
Gn ∼ Γ(n)

2π
as n→ ∞. (7.48)

The comparatively simplistic nature of the Airy equation makes
matching between inner and outer solutions straightforward. Recalling
that χ = ϵζ, the nth term of the outer approximation is

Aouter =⇒ ϵnAn(x) ∼
1

x1/4
ΛΓ(n)

ζn
as x→ 0. (7.49)
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Figure 7.7: Numerical solution of the recurrence relation (7.467.46) showing convergence
to Gn ∼ 1/(2π) as n→ ∞.

This is then matched to the nth term of the inner solution. From (7.487.48),
we have

Ainner =⇒
Gn

x1/4ζn
∼ Γ(n)

2πx1/4ζn
, (7.50)

therefore

Λ =
1

2π
. (7.51)

The determination of Λ above completes our characterisation of the
divergent form (7.377.37).

7.3.2 Optimal truncation and Stokes smoothing

The Stokes smoothing procedure proceeds similarly to the analogous
procedure in chapter 66. We first truncate the expansion,

A(x) =

N−1∑
n=0

ϵnAn +RN (x), (7.52)

and obtain an equation for the remainder, RN (x), which is forced by the
divergence of the base asymptotic expansion. If N is chosen optimally,
then RN is exponentially small, and its form is sought as x varies across
the Stokes line. Using a similar procedure to that presented in chapter 66,
we find that across the Stokes lines (proceeding in the anti-clockwise
direction), the remainder RN (x) incurs a jump given by

RN (x) ∼
[
2πi

ϵγ

]
Qe−χ/ϵ = i

e4/3x
4/3/ϵ

x1/4
, (7.53)

where χ and Q are respectively given by (7.397.39) and (7.407.40), with further
components of γ = 0 and Λ = 1/(2π).

The criterion for the location of Stokes lines had been earlier de-
rived for the case of the exponential integral and complementary error
functions using the Stokes line smoothing procedures (where we would
have noted the common factor of eχ/ϵ−∥χ|/ϵ (see the exercises at the
end of this section). Therefore, for this case, they are given in the same
fashion as in (6.266.26):
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Stokes lines for the Airy equation (algebraic base series version)

The Stokes lines for the Airy equation, with solution written as
y = Ae−2/3x3/2/ϵ, are given by the set of points, x, where

Imχ(x) = 0 and Reχ(x) ≥ 0, (7.54)

where χ = −4
3x

3/2. Across such lines (curves), the base series,

A ∼ A0 + ϵA1 + ϵ2A2 + . . . with A0 = 1/x1/4 switches-on the
exponential (i/x1/4)e−χ/ϵ.

Returning to the solution in terms of y via (7.337.33) and multiplying

this remainder with the base exponential scaling of e−2/3x3/2/ϵ, then we
have that across the Stokes line, the following switching occurs:

1

x1/4
e−2/3x3/2/ϵ θ=2π/3−−−−−−−−→ 1

x1/4
e−2/3x3/2/ϵ + i

1

x1/4
e2/3x

3/2/ϵ. (7.55)

We can check its value on the negative real axis. Taking x3/2 = −i|x|3/2
(the branch cut is taken along Arg(x) = 2π), we have

2

|x|1/4 cos
(
2

3
|x|3/2 − π

4

)
. (7.56)

Remembering that our solutions in this section should be multipled byThis needs to be checked!

1/(2
√
π) in order to match the scaling on the Ai function, then we can

now compare the above to (7.337.33).
The exponential asymptotics is illustrated in fig. 7.87.8, showing the

smooth switching-on of the exponentially-small term across θ = 2π/3.

Figure 7.8: The Ai(x) function (shown solid) is analytically continued into the
complex x-plane. At Arg x = 2π/3, the transition across the Stokes line (dashed)
causes an exponentially small term to switch on in a smooth manner.

Further notes

The reader will recall that, related to (7.327.32), we had removed the leading
exponential from the original y(x) form of the Airy equation; this was
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convenience, allowing the base series expansion for A(z), to proceed
in a purely algebraic series in powers of ϵ. In this case, the Stokes
line criterion leading to (7.547.54) effectively compares the subdominant
exponential, ∼ e−χ/ϵ with a base series with leading exponential e0. If
we instead label

χ1 =
2

3
x3/2 and χ2 = −2

3
x3/2, (7.57)

and note that two asymptotic expansions for y being considered as
proportional to e−χ1/ϵ and e−χ/ϵ, then we can develop the following
alternative Stokes line condition:

Stokes lines for the Airy equation (exponential base series version)

The Stokes lines for the Airy equation are given by where

Imχ2(x) = Imχ1(x) and Reχ2(x) ≥ Reχ1(x), (7.58)

where χ1 and χ2 are defined as above. Across such curves, the
base series, with y ∼ x−1/4e−χ1/ϵ switches on the exponential
∼ ix−1/4e−χ2/ϵ.

The relationship between the Stokes line condition above and
the steepest descent criterion in (7.307.30) should now be understood.

7.4 exercises

1. By substituting the WKBJ ansatz f ∼ A(z)e−χ(z)/ϵ into the Airy
equation (7.27.2), develop the two linearly independent solutions
given by (7.67.6).

2. By performing optimal truncation and Stokes line smoothing ap-
plied to the ODE (7.347.34), demonstrate that the remainder satisfies
(7.537.53).
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