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The asymptotic analysis of a differential equation is often challenging
because of the competition between local and global features: the
differential equation provides a local relationship between the values of
a function and its derivatives at a point. Thus, a local analysis (like
the expansion of the solution into a series) typically yields unknown
constants of integration—these must then be related to boundary- or
initial conditions through a global study of the solution. As we saw in the
previous chapter on the method of matched asymptotic expansions, in
many singular problems, the asymptotic expansion becomes disordered
in different parts of the domain, rendering this task difficult.

In some cases, it is possible to formulate the problem as an integral.
This formulation may be natural (e.g. a physical law posed as an
integral) or through a further transformation of the differential equation.
Integral formulations are often simpler because the global information of
the problem is explicitly specified within the integrand, and the initial-
or boundary-conditions embedded, with no need to solve for additional
constants. The task, then, is to perform an asymptotic analysis of the
integrals.

As we shall see in later chapters, many exponential asymptotic
investigations are done by selecting a problem with an integral for-
mulation, developing the asymptotics of the integral, before returning
to the differential equation and developing the parallel theory, there,
pretending to be ignorant of the previous findings.

4.1 integration by parts

For certain problems, simple integration-by-parts allows a derivation of
the asymptotic expansion. These problems are characterised by those
where the dominant contributions to the integrals are primarily from
the endpoints. The following is a standard example of this phenomenon.

Example 4.1 (Integration by parts for Ei(x))
We seek an asymptotic expansion of the exponential integral,

Ei(x) =

∫ ∞

x

e−t

t
dt, (4.1)

in the limit x → ∞. With dv = e−t dt and u = −1/t, integration by
parts yields

Ei(x) =

[
−e−t

t

]∞
x

−
∫ ∞

x

e−t

t
dt

=
e−x

x
+

[
e−t

t2

]∞
x

+ 2

∫ ∞

x

e−t

t3
dt.
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This process can be continued in order to develop the divergent series

Ei(x) ∼ e−x
∞∑
n=1

(−1)n+1(n− 1)!

xn
. (4.2)

It can be useful to visualise the integrand in the asymptotic limit.
Let x = X/ϵ and consider fixed X and ϵ → 0. Then with t = xϵ, the
integral transforms to

Ei(X/ϵ) = ϵ

∫ ∞

X

e−s/ϵ

s
ds. (4.3)

The integrand is visualised in fig. 4.14.1 for three different values of ϵ. As
ϵ → 0, the integrand becomes exponentially suppressed everywhere
away from s = 0, but with the largest contribution to the integral near
the endpoint of integration, s = X.
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Figure 4.1: Illustration of the integrand f(s) = e−s/ϵs for different values of ϵ. In
these graphs, the endpoint is chosen to be s = X = 1.

The following is an example where the integral, in its original form,
must be re-written so that integration-by-parts can be applied.

Example 4.2 (Integration by parts with ∞ − ∞)
We consider an asymptotic expansion of the integral

I(x) =

∫ x

0
t−1/2e−t dt,

in the limit x→ ∞.

Naively integrating by parts yields

I(x) =
[
−t−1/2e−t

]x
0
− 1

2

∫ x

0
t−3/2e−t dt,
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and thus the indeterminate value of ∞−∞. However, we may remove
the leading-order contribution by first re-writing,

I(x) =

∫ ∞

0
t−1/2e−t dt−

∫ ∞

x
t−1/2e−t dt. (4.4)

The first integral has value Γ(1/2) =
√
π. The second integral can now

be integrated by parts, with

I(x) =
√
π +

∫ ∞

x
t−1/2de

−t

dt
dt =

√
π +

e−x√
x
+

1

2

∫ ∞

x
e−3/2e−t dt,

and the process can be continued to higher order. Integration by parts
typically works if the dominant contribution to the integral comes from
the endpoints. The trick of writing the integral in the form (4.44.4) works
for this problem; the leading-order estimate is the complete integral
over t ∈ [0,∞)—naive integration by parts yields an alternating series
of infinities because of the t−1/2 factor.

4.2 laplace’s method

Laplace’s method is a general technique for obtaining the asymptotic
expansion of integrals of the form,

I(x) =

∫ b

a
f(t)exϕ(t) dt, (4.5)

in the limit x→ ∞. Such integrals are quite common in applications
related to wave propagation. For now, we consider real-valued functions,
f and ϕ. The allowable f and ϕ are those which make the integral exist
for the given x.

Example 4.3 (Laplace integral with boundary contribution)
Consider the asymptotic expansion of

I(x) =

∫ 1

0

e−xt

1 + t
dt,

as x→ ∞.

Observe that as x→ ∞, the largest contribution to the integral comes
from t = 0, since the factor e−xt causes a very fast exponential decay
away from the origin. This is visualised in fig. 4.24.2.

We thus split the range of integration as

I(x) =

∫ ϵ

0

e−xt

1 + t
dt+

∫ 1

ϵ

e−xt

1 + t
dt.

where 1/x≪ ϵ≪ 1. The second integral is bounded by its contribution
at t = ϵ, and∣∣∣∣∫ 1

ϵ

e−xt

1 + t
dt

∣∣∣∣ ≤ e−xϵ
∫ 1

0

1

1 + t
dt = e−xϵ log 2.
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Figure 4.2: A plot of the integrand e−xt/(1+ t) for increasing values of x. As x→ ∞,
the dominant contribution to the integral comes from the endpoint, t = 0.

so is O(e−ϵx) and is neglected from exponential smallness.

Returning to the first integral, we remark the size of the factor e−xt

is difficult to interpret since both x→ ∞ and t = ϵ→ 0. Therefore, let
us set s = xt. Then

I(x) ∼ 1

x

∫ xϵ

0

e−s

1 + s/x
ds.

Since the largest value of s, xϵ, is ≪ x, we may now expand the
denominator via a standard geometric series:

I(x) ∼ 1

x

∫ xϵ

0
e−s

∞∑
n=0

(−s)n
xn

ds.

The interior series expansion is uniform on the domain 0 < s < ϵx, so
we may interchange integration and summation to give

I(x) ∼
∞∑
n=0

1

xn+1

∫ xϵ

0
(−s)ne−s ds.

A key trick now occurs in Laplace’s method. We can essentially
extend the upper limit of integration from xϵ to infinity. This is since∫ xϵ

0
(−s)ne−s ds =

(∫ ∞

0
−
∫ ∞

xϵ

)
(−s)ne−s ds.

However, the rightmost integral is exponentially small, and its magni-
tude is of order (xϵ)ne−xϵ. Therefore the approximation of

I(x) ∼
∞∑
n=0

1

xn+1

∫ ∞

0
(−s)ne−s ds,
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introduces only exponentially small errors. Finally, by definition of the
gamma function: ∫ ∞

0
sne−s ds = Γ(n+ 1) = n!,

we finally have

I(x) ∼
∞∑
n=0

(−1)nn!

xn+1
=

1

x
− 1

x2
+

2

x3
− . . .

The previous example 4.34.3 was an example where the dominant
contribution of the Laplace-type integral (4.54.5) occurs at the endpoint
of integration. Another interesting case occurs when the dominant
contribution occurs within the interior of the domain of integration.
This is discussed below, but we shall find it easier to discuss the method
in the context of general integrals.

Consider again the Laplace-type integral,

I(x) =

∫ b

a
f(t)exϕ(t) dt, (4.6)

in the limit x→ ∞. It is assumed that x is real and positive, that g is
a real continuous function, and ϕ, ϕ′, and ϕ′′ are real and continuous
on t ∈ [a, b].

The essence of Laplace’s idea is that as x → ∞, the dominant
contribution to the integral comes from the neighbourhood of the point
in the integration domain where ϕ is maximal. Hence there are primarily
two cases to consider: (i) ϕ is maximal at its endpoints, t = a or t = b;
or (ii) ϕ is maximal at an interior point, t = c, with c ∈ (a, b). In both
of these cases, the procedure is as follows.

First, the range of integration is limited to a neighbourhood of
the maximum, say t = t∗, of ϕ; contributions to I outside of this
neighbourhood are argued to be subdominant (typically exponentially
subdominant). Second, the factor f and ϕ are expanded into Taylor
series about t = t∗. Third, one or both integration limits are extended
to infinity, at the cost of only introducing exponentially small errors.
The resultant integral then does not depend on the precise specification
of the neighbourhood, and produces the asymptotic expansion of I.

We examine the case of a maximum within the interior (case ii
above), leaving the general argument of the maximum at the endpoint
(case i) for the exercises. Let us thus consider (4.64.6) split into a local
and nonlocal part:

I(x) =

(∫ c−ϵ

a
+

∫ c+ϵ

c−ϵ
+

∫ b

c+ϵ

)
f(t)exϕ(t) dt,

where c ∈ (a, b) is assumed to be the maximum value of ϕ over the
interval [a, b]. The exact size of ϵ is left undetermined for now, but it
will certainly be such that ϵ → 0 as x → ∞. Then, by assumption of
c and continuity of the integrand, the first integral is O(exϕ(c−ϵ)), and
the third is O(exϕ(c+ϵ)). Note that

ϕ(c+ ϵ) = ϕ(c) +
ϵ2

2
ϕ′′(c) + . . . ,
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since ϕ is a maximum at t = c. Thus the exponential factor is

e[xϕ(c+ϵ)] = exϕ(c)exϕ
′′(c)ϵ2/2+...

and is exponentially smaller than exϕ(c) if

xϵ2 ≪ 1. (4.7)

A similar argument applies for the exponential with factor ϕ(c− ϵ).
Examining only the second integral, we then expand its arguments

about t = c:

I ∼
∫ c+ϵ

c−ϵ

[
f(c) + f ′(c)(t− c) + . . .

]
× ex[ϕ(c)+ϕ

′′(c)/2(t−c)2+ϕ′′′(c)/3!(t−c)3+...] dt. (4.8)

This can be written as

I ∼
∫ c+ϵ

c−ϵ

[
f(c) + f ′(c)(t− c) + . . .

]
exϕ(c)exϕ

′′(c)(t−c)2/2

× ex[ϕ
′′′(c)/3!(t−c)3+...] dt. (4.9)

It is convenient to perform a coordinate transformation in order to
remove x from the exponential. Since the second exponential on the
first line is of Gaussian form, this suggests setting s2 = x(t− c)2 and
hence

√
x(t− c) = s. Then

I ∼ exϕ(c)√
x

∫ √
xϵ

−√
xϵ

[
f(c) + f ′(c)

s√
x
+ . . .

]
es

2ϕ′′(c)/2

× e
[
ϕ′′′(c)
6
√
x
s3+...]

ds. (4.10)

Within the integration domain, the last exponential factor can be
expanded into a Taylor series as long as∣∣∣∣ s3x1/2

∣∣∣∣ ≤
∣∣∣∣∣(x1/2ϵ)3x1/2

∣∣∣∣∣ = |x|ϵ3 ≪ 1.

Thus in combination with the condition (4.74.7), in our selection of the
neighbourhood of t = c, we select the size:

1

x1/2
≪ ϵ≪ 1

x1/3
.

Returning to the integral (4.104.10), we consider only the leading term
for simplicity. We have

I ∼ f(c)exϕ(c)√
x

∫ √
xϵ

−√
xϵ
es

2ϕ′′(c)/2 ds.

In this expression, we may finally let the upper and lower limits of
integration tend to infinity, only introducing exponentially small errors.
Thus

I(x) ∼ f(c)exϕ(c)√
x

∫ ∞

−∞
es

2ϕ′′(c)/2 ds =

√
2πf(c)exϕ(c)√
−xϕ′′(c)

. (4.11)
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Example 4.4 (Laplace integral with interior contribution)
Consider the asymptotic expansion of

I(x) =

∫ 1

0

e−xt

1 + t
dt

as x→ ∞.

Example 4.5 (Stirling’s formula)
Consider the asymptotic expansion of

Γ(x+ 1) =

∫ ∞

0
txe−t dt =

∫ ∞

0
e−t+x log t dt,

as x→ ∞.

Hint: consider the transformation t = xτ .

Under the transformation, we have

Γ(x+ 1) = xx+1

∫ ∞

0
exϕ(τ) dτ, ϕ(τ) = −τ + log τ.

There is a single maximum at τ = 1 where ϕ(1) = −1 and ϕ′′(1) = −1.
Thus using the formula (4.114.11) yields

Γ(x+ 1) ∼ xx+1e−x
√

2π

x
=

√
2πxx+1/2e−x.

If x = n = 0, 1, 2, . . . is a non-negative integer, then Γ(x+ 1) = n! and
the above approximation yields the celebrated Stirling’s formula:

n! ∼
√
2πnn+1/2e−n. (4.12)

There are many extensions and generalisations of Laplace’s method,
but the basic idea is generally the same: approximate the integral by
considering local expansions about points in the integrand that provide
the dominant contributions. Variations on this theme can include: (i)
expansion about points where the integrand function, f(t) = 0; this can
often be remedied via initial integration-by-parts and Taylor expansion
of f ; (ii) movable maxima problems of the form

∫
f(t)eϕ(x,t) dt where

now the location of the maxima changes with the value of x.

4.3 exercises

1. Watson’s lemma applies to integrals of the form

I(x) =

∫ b

0
f(t)e−xt dt, b > 0.

Suppose that f is continuous on t ∈ [0, b] and has the asymptotic
expansion

f(t) ∼ tα
∞∑
n=0

ant
βn, as t→ 0+,
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where α > −1 and β > 0 so that the integral converges at t = 0.
If b = ∞, then we also restrict f ≪ ect as t→ ∞ for some positive
constant c so the integral converges. Then Watson’s lemma states

I(x) ∼
∞∑
n=0

anΓ(α+ βn+ 1)

xα+βn+1
, x→ ∞.

By following the procedure as in example 4.34.3, prove Watson’s
lemma.
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the method of steepest descents

5Draft chapter last generated 2024-12-02; P.H. Trinh

In generalising the integral approximation methods from the previous
chapter to complex-valued functions, a very powerful method of asymp-
totic approximation, called the method of steepest descents, can be
developed. This time, we are interested in the asymptotics of integrals
of the form

I(λ) =

∫
C
f(t)eλh(t) dt, (5.1)

where C is some contour in the complex plane, f and h are complex-
valued (typically holomorphic) functions of t ∈ C, and λ > 0 is real. We
are primarily interested in the limit of λ→ ∞. Note that the contour,
C, can be between finite points in the plane, but can also be infinite or
semi-infinite in extent.

Let us write the real and imaginary parts of h as

h(t) = ϕ(t) + iψ(t).

If the contour C runs between points ta to tb, we have

|I(λ)| ≤
∫ tb

ta

|f |eλϕ(t) dt < LmaxL(|f |eλϕ),

where the max notation corresponds to the maximum of the argument
along the path of integration C, and L corresponds to the length of
C. Following Laplace’s method, the argument seems straightforward:
consider the integral (5.15.1) in a neighbourhood of the maximal value of
ϕ, say at t = t0. Then from the previous chapter,

I(λ) ∼ f(t0)

√
2π

−λh′′(t0)
eλh(t0).

However, in doing so, we find that the above estimate is far too large.
The issue is that that there is, in general, a variable phase component,
with factor eiλψ(t). In the limit λ→ ∞, this produces a highly oscillatory
integrand, where there is significant positive and negative cancellation,
which must be taken into account when integrating locally about t = t0.
The trick is to choose a path along which ψ = Imh(t) is constant—in
this case, eiλψ is unchanging in t and the integrand behaves in the
fashion we expect with its dominant contribution centred about t = t0
and decaying in a well-behaved way away from this point.

We must consider the complex-valued landscape. We assume that
away from points of non-analyticity, h is otherwise analytic and thus
its real and imaginary parts satisfy the Cauchy-Riemann equations:

∂ϕ

∂x
=
∂ψ

∂y
, (5.2)

∂ϕ

∂y
= −∂ψ

∂x
. (5.3)
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From definition of the complex derivative,

h′(z) = ϕx + iψx = ϕx − iψy. (5.4)

Therefore at z = z0 = x0 + iy0, a relative maximum of ϕ, the two
components are zero, ϕx = ϕy = 0. A similar relationship on the first
derivative holds for ψ. Consequently such points correspond to critical
points of h with

h(t0) = 0. (5.5)

Moreover, by the standard tenants of complex functions, ϕ and ψ
are potential functions, satisfying Laplace’s equation, ∇2ϕ = 0 and
∇2ψ = 0. By the maximum modulus theorem, ϕ and ψ cannot have
extrema in the domain of analyticity of h(z). Therefore, z0 must be a
saddle point of ϕ and ψ, and we will analogously say that h has the
saddle point z0.

It remains to consider the optimal path through z0, for which we
must deform C. As discussed earlier, we wish to choose paths for which
ψ = Imh is constant in order to avoid the issue of rapid oscillations as
λ→ ∞. By the Cauchy-Riemann quations,

∇ϕ · ∇ψ = 0,

then it is the case that lines of constant ϕ are orthogonal to lines
of constant ψ. By elementary calculus, ∇ϕ is the direction of steep-
est descent/ascent. Together, with the above equality, this indicates
that the path for which ψ is constant is precisely the path of steepest
descent/ascent for ϕ.

Indeed this seems to be an optimal path indeed for which to apply
Laplace’s method.

The formula for the method of steepest descents is as follows. If the
integration domain is t: (i) determine the endpoints and saddle points
of h, i.e. points t0 with h′(t0) = 0. Other critical points, such as branch
points or singularities, may need to be considered on a case-by-case
basis. Next, (ii) determine the paths of steepest descent/ascent through
such saddle points. These are given by curves, t ∈ C, such that

Imh(t) = const. (5.6)

Typically, the crucial curve of interest is the one that travels through
the saddle point in (i), i.e. Imh(t) = Imh(t0). A point on the path is
considered on the point of a path of steepest descent if

Reh(t) > Reh′(t0). (5.7)

Next, (iii) evaluate the local contributions as in Laplace’s method.

The above procedure is repeated for all the relevant points, which
includes endpoints of integration and saddle points, and also branch
points and singularities. The exact deformation procedure will always
depend on the precise topology of the integrand function.
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Example 5.1 (Steepest descent on inverse gamma)
Consider the asymptotic approximation of

1

Γ(x)
=

1

2πi

∫
C
t−xet dt,

in the limit x→ ∞.11 1Note we use x here as the
large parameter, in connection to
prior use of the gamma function.

Note that there is a branch cut of the logarithm corresponding to
t−x = e−x log t, which we take to be along the negative real axis. Above,
C is the so-called Hankel contour, which starts at t = −∞− ia, a > 0,
encircles the branch cut, and returns to infinity along t = −∞ + ib,
b > 0.

This is a moveable maxima problem; writing

1

Γ(x)
=

1

2πi

∫
C
e−x log t+t dt.

If we naively consider the extrema of the complete exponential argument,
we see that it contains a stationary point at t = x, which is moving as
x→ ∞. To put the integral into a more standard form, we set t = xs
giving

1

Γ(x)
=

1

2πixx−1

∫
C
exh(s) ds, where h(s) = s− log s.

Considering now the complex saddle points, we have h′(s) = 1− 1/s,
therefore there is a saddle point at s = 1. We expand:

h(s) ∼ 1 +
(s− 1)2

2
− (s− 1)3

3
+ . . . (5.8)

The usual change in integration variable allows the quadratic term
to be placed into standard form. We set x(s − 1)2 = u2 (taking the
appropriate positive roots). Then

∼ ex

2πixx−1x1/2

∫
C
e

u2

2
− u3

3
√
x
+...

du

=
ex

2πixx−1x1/2

∫
C
e

u2

2
(
1 +O(u3/

√
x)
)
du. (5.9)

We can observe from the above that the steepest descent contour is
parallel to the imaginary axis, and it is advantageous to set u = iv so
as to turn the exponential into the standard Gaussian function. More
systematically, however, we can set s− 1 = sx + isy. Then noting that

(s− 1)2 = (s2x − s2y) + 2isxsy,

we see that the contour of steepest descent near s = 1 is given by

Imh(s) ∼ sxsy = Imh(1) = 0,

and therefore the appropriate contour, which goes through sx+ isy = 0,
will locally follow the vertical line, with sx = 0 corresponding to
Im s = 1.
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The contours, as calculated from the h(z) function are shown in
fig. 5.15.1. Dashed lines correspond to lines of constant Reh = ϕ and solid
lines to steepest descent lines of constant Imh = ψ. We observe the
saddle-point structure near z = 1. The initial Hankel contour, which
tends to −∞ initially below the real axis, to −∞ above the real axis,
must thus be deformed into the steepest descent contour (solid) that
passes through z = 1. Thus, we see that the new contour begins in a
valley (shown grey), increases to the maximum z = 1, and decreases
again to another valley.
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Figure 5.1: Contours of Imh = ψ (solid) and Reh = ϕ (dashed). Grey regions
indicate regions where Reh ≤ Reh(1), i.e. valleys with respect to the saddle point
at z = 1.

Finally, returning to the integral (5.95.9) with u = iv, we have

1

Γ(x)
∼ ex

2πxx−1/2

∫ ∞

−∞
e−v

2/2 dv =
ex√

2πxx−1/2
. (5.10)

This matches the result for Stirling’s formula established in example 4.54.5.

38 chapter 5 · the method of steepest descents


