ASYMPTOTIC APPROXIMATION OF INTEGRALS
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The asymptotic analysis of a differential equation is often challenging
because of the competition between local and global features: the
differential equation provides a local relationship between the values of
a function and its derivatives at a point. Thus, a local analysis (like
the expansion of the solution into a series) typically yields unknown
constants of integration—these must then be related to boundary- or
initial conditions through a global study of the solution. As we saw in the
previous chapter on the method of matched asymptotic expansions, in
many singular problems, the asymptotic expansion becomes disordered
in different parts of the domain, rendering this task difficult.

In some cases, it is possible to formulate the problem as an integral.
This formulation may be natural (e.g. a physical law posed as an
integral) or through a further transformation of the differential equation.
Integral formulations are often simpler because the global information of
the problem is explicitly specified within the integrand, and the initial-
or boundary-conditions embedded, with no need to solve for additional
constants. The task, then, is to perform an asymptotic analysis of the
integrals.

As we shall see in later chapters, many exponential asymptotic
investigations are done by selecting a problem with an integral for-
mulation, developing the asymptotics of the integral, before returning
to the differential equation and developing the parallel theory, there,
pretending to be ignorant of the previous findings.

4.1 INTEGRATION BY PARTS
For certain problems, simple integration-by-parts allows a derivation of
the asymptotic expansion. These problems are characterised by those

where the dominant contributions to the integrals are primarily from
the endpoints. The following is a standard example of this phenomenon.

Example 4.1 (Integration by parts for Ei(x))
We seek an asymptotic expansion of the exponential integral,

Fi(x) — /OO % dt, (4.1)

in the limit  — oo. With dv = e~* dt and u = —1/t, integration by

parts yields
eft o ooeft
Ei(z) = |—-——| - — dt
Gl
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This process can be continued in order to develop the divergent series

Ei(z) ~ ¢~ i (=" (= 1)t (4.2)
n=1

xn

It can be useful to visualise the integrand in the asymptotic limit.
Let x = X /e and consider fixed X and € — 0. Then with ¢ = ze, the
integral transforms to

00 —s/e

Ei(X/e) = 6/ ds. (4.3)

X S

The integrand is visualised in fig. 4.1 for three different values of €. As
e — 0, the integrand becomes exponentially suppressed everywhere
away from s = 0, but with the largest contribution to the integral near
the endpoint of integration, s = X.
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Figure 4.1: Ilustration of the integrand f(s) = e %/¢s for different values of e. In
these graphs, the endpoint is chosen to be s = X = 1.

The following is an example where the integral, in its original form,
must be re-written so that integration-by-parts can be applied.

Example 4.2 (Integration by parts with co — co)
We consider an asymptotic expansion of the integral

I(:p):/ 127t d,
0

in the limit x — oo.
Naively integrating by parts yields

x 1 [*
I(z) = [—til/Ze*t}o - 2/0 7327t 4,

CHAPTER 4 - ASYMPTOTIC APPROXIMATION OF INTEGRALS



and thus the indeterminate value of co — co. However, we may remove
the leading-order contribution by first re-writing,

I(z) = / =127t dt — / =127t dt. (4.4)
0 T

The first integral has value I'(1/2) = /7. The second integral can now
be integrated by parts, with

t

[(x) = ﬁ+/wt1/2de_ dt = ﬁ+ i + 1/0063/2et dt

v dt vroo2/, ’
and the process can be continued to higher order. Integration by parts
typically works if the dominant contribution to the integral comes from
the endpoints. The trick of writing the integral in the form (4.4) works
for this problem; the leading-order estimate is the complete integral
over t € [0, 00)—naive integration by parts yields an alternating series

of infinities because of the t1/2 factor.

4.2 LAPLACE’S METHOD

Laplace’s method is a general technique for obtaining the asymptotic
expansion of integrals of the form,

I(z) = / b F(t)e™ dt, (4.5)

in the limit £ — oco. Such integrals are quite common in applications
related to wave propagation. For now, we consider real-valued functions,
f and ¢. The allowable f and ¢ are those which make the integral exist
for the given .

Example 4.3 (Laplace integral with boundary contribution)
Consider the asymptotic expansion of

1 e—xt
I(x):/ dt,
o 1+t

as r — O0.

Observe that as z — oo, the largest contribution to the integral comes
from t = 0, since the factor e ! causes a very fast exponential decay
away from the origin. This is visualised in fig. 4.2.

We thus split the range of integration as

ee—:ct 1e—xt
I(x):/ dt—l—/ dt.
o 1+t . 1+t

where 1/2 < € < 1. The second integral is bounded by its contribution

at t = ¢, and
1 e—a:t e 1 1 e
dt| <e —— dt = e *log?2.
e 1+t o 1+t
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Figure 4.2: A plot of the integrand e~**/(1+t) for increasing values of z. As x — oo,
the dominant contribution to the integral comes from the endpoint, ¢t = 0.

so is O(e~ ") and is neglected from exponential smallness.

Returning to the first integral, we remark the size of the factor e~
is difficult to interpret since both x — oo and t = ¢ — 0. Therefore, let
us set s = xt. Then

xt

1 Tre e—S
I(x) ~— ——F ds.
(z) a:/o 1+s/x °

Since the largest value of s, xe, is < x, we may now expand the
denominator via a standard geometric series:

I(x) ~ i/oxe e ® Z (;)n ds.

n=0

The interior series expansion is uniform on the domain 0 < s < ez, so
we may interchange integration and summation to give

e 1 e .
I(x)wzxnﬂ/o (—s)"e™?® ds.
n=0

A key trick now occurs in Laplace’s method. We can essentially
extend the upper limit of integration from xe to infinity. This is since

/0 CCere ds = ( /0 T /x Oo) (—s)"e=* ds.

However, the rightmost integral is exponentially small, and its magni-
tude is of order (ze)"e~*¢. Therefore the approximation of

S 1 > n. —s
I(x) ~ Z 33”“/0 (—s)"e™* ds,
n=0
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introduces only exponentially small errors. Finally, by definition of the
gamma, function:

o
/ s"e ¥ ds=T(n+1) =nl,
0

we finally have

[ee]
(=1)™! 1 1 2
n=0
The previous example 4.3 was an example where the dominant
contribution of the Laplace-type integral (4.5) occurs at the endpoint

of integration. Another interesting case occurs when the dominant

contribution occurs within the interior of the domain of integration.

This is discussed below, but we shall find it easier to discuss the method
in the context of general integrals.
Consider again the Laplace-type integral,

I(z) = / " FH)e 0 dr, (4.6)

in the limit x — oo. It is assumed that x is real and positive, that g is
a real continuous function, and ¢, ¢, and ¢” are real and continuous
ont € [a,b].

The essence of Laplace’s idea is that as * — oo, the dominant
contribution to the integral comes from the neighbourhood of the point
in the integration domain where ¢ is maximal. Hence there are primarily
two cases to consider: (i) ¢ is maximal at its endpoints, ¢t = a or t = b;
or (ii) ¢ is maximal at an interior point, ¢t = ¢, with ¢ € (a,b). In both
of these cases, the procedure is as follows.

First, the range of integration is limited to a neighbourhood of
the maximum, say t = t*, of ¢; contributions to I outside of this
neighbourhood are argued to be subdominant (typically exponentially
subdominant). Second, the factor f and ¢ are expanded into Taylor
series about ¢t = t*. Third, one or both integration limits are extended

to infinity, at the cost of only introducing exponentially small errors.

The resultant integral then does not depend on the precise specification
of the neighbourhood, and produces the asymptotic expansion of I.

We examine the case of a maximum within the interior (case ii
above), leaving the general argument of the maximum at the endpoint
(case i) for the exercises. Let us thus consider (4.6) split into a local
and nonlocal part:

o= ([ [ [ o

where ¢ € (a,b) is assumed to be the maximum value of ¢ over the
interval [a, b]. The exact size of € is left undetermined for now, but it
will certainly be such that ¢ — 0 as © — oo. Then, by assumption of
¢ and continuity of the integrand, the first integral is O@(e**(¢=9), and
the third is O(e*?(¢t9)). Note that

62
dlcte) =odlc) + 5d"() +...,
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since ¢ is a maximum at ¢ = ¢. Thus the exponential factor is

elzp(cto)] _ qzd(c) qz¢" (c)e?/2+...

and is exponentially smaller than ¢*#(¢) if
ze® < 1. (4.7)

A similar argument applies for the exponential with factor ¢(c — ¢).
Examining only the second integral, we then expand its arguments
about t = ¢:

IN/CC+E[f(c)+f'(c)(t—c)+...}

—€

x t[e(€)+d"(e)/2(t=)*+o" () 3(1=c)+-] qp  (4.8)

This can be written as

cte
I~ / [£(@) + £t =) + ... erdlens(@e=c?/2

—€

" em[¢///(c)/3!(t_c)3+...] dt. (49)

It is convenient to perform a coordinate transformation in order to
remove x from the exponential. Since the second exponential on the
first line is of Gaussian form, this suggests setting s? = z(t — ¢)? and
hence v/z(t — ¢) = s. Then

eg”‘z’(c)/\/;E S 2 411
I~ fle —|—f’c——|—...e5¢(0)/2
v A CARACh-

e © Tl ds. (4.10)

Within the integration domain, the last exponential factor can be
expanded into a Taylor series as long as

$3

172

($1/26)3
r1/2

= |z]et < 1.

Thus in combination with the condition (4.7), in our selection of the
neighbourhood of ¢t = ¢, we select the size:

1 1
212 ek Zij
Returning to the integral (4.10), we consider only the leading term
for simplicity. We have
f(c)em(C) Vwe
\/E —\/ze

In this expression, we may finally let the upper and lower limits of
integration tend to infinity, only introducing exponentially small errors.
Thus

I~ 5902 g5,

fle)e™@(@) oo 020"(0)/2 g - V2TS (C)eW(C)_

U N 0

(4.11)
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Example 4.4 (Laplace integral with interior contribution)
Consider the asymptotic expansion of

le—xt
I(J;):/ det
0 1+t

as r — 00.

Example 4.5 (Stirling’s formula)
Consider the asymptotic expansion of

oo oo
Pz+1) = / tYe”t dt = / e ttelost gy
0 0

as T — 00.
Hint: consider the transformation t = x7.
Under the transformation, we have

Fxz+1)= xwﬂ/ (1) dr, ¢(r) = —7+logT.
0

There is a single maximum at 7 = 1 where ¢(1) = —1 and ¢"(1) = —1.

Thus using the formula (4.11) yields

2
D(z+1) ~z"e ™y e AR
x

If x =n=0,1,2,... is a non-negative integer, then I'(z + 1) = n! and
the above approximation yields the celebrated Stirling’s formula:

n! ~ V2rnt/2em, (4.12)

There are many extensions and generalisations of Laplace’s method,
but the basic idea is generally the same: approximate the integral by
considering local expansions about points in the integrand that provide
the dominant contributions. Variations on this theme can include: (i)
expansion about points where the integrand function, f(¢) = 0; this can
often be remedied via initial integration-by-parts and Taylor expansion
of f; (ii) movable maxima problems of the form [ f(t)e?®! dt where
now the location of the maxima changes with the value of x.

4.3 EXERCISES

1. Watson’s lemma applies to integrals of the form

I(z) = /0 T T Y

Suppose that f is continuous on ¢ € [0, b] and has the asymptotic
expansion

o
F&) ~ ) ant?, ast— 07,
n=0
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where o > —1 and S > 0 so that the integral converges at ¢t = 0.
If b = oo, then we also restrict f < e as t — oo for some positive
constant ¢ so the integral converges. Then Watson’s lemma states

[e.e]
apl'(a+ Bn+1)
I(z) ~ Z potBntl L= 00
n=0

By following the procedure as in example 4.3, prove Watson’s
lemma.
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