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At the beginning of chapter 22 and via (2.12.1), we introduced a complexity
that often occurs in the study of singular boundary-value problems: the
existence of boundary layers. Such boundary layers are characterised
by regions where the solution derivatives are asymptotically large, and
hence terms such as ϵy′′ are no longer negligible compared to e.g. y.
For such problems, the solution can be approximated by asymptotic
expansions valid in different regions. We often refer to solutions valid
within an ‘outer’ region, where the function and its derivatives are
bounded as ϵ → 0. This is in contrast to an ‘inner’ region, valid
within the boundary layers. Once the solutions are determined in
their respective regions, they are then matched together in order to
determine unknown constants of integration. It is easiest to explain the
methodology via particular examples.

3.1 an example with a boundary layer

Consider again (2.12.1):

ϵy′′ + 2y′ + 2y = 0, 0 < x < 1

y(0) = 0 and y(1) = 1.
(3.1)

Outer solution. We expand the solution as

y(x) = y0(x) + ϵy1(x) + ϵ2y2(x) + . . . (3.2)

This yields at leading order,

2y′0 + 2y0 = 0. (3.3)

We solve the leading-order equation, and based on the intuition of fig. 2.12.1,
we impose the boundary condition at x = 1 and hence y0(1) = 1. This
yields the leading-order approximation

y(x) ∼ youter = e1−x. (3.4)

In reducing the procedure to solving a first-order equation (3.33.3), we
could not impose both boundary conditions. Indeed, the above approx-
imation does not satisfy the boundary of y(0) = 0, and in fact, we
see that youter ∼ e as x → 0. A plot of the outer solution is shown in
fig. 3.13.1. 0 1
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Figure 3.1: Leading-order outer
solution (thick) vs. numerical
solution with ϵ = 0.05 (dashed).

Inner solution. The solution is to introduce a boundary layer near
x = 0. The layer is assumed to be of order δ ≪ 1, and we perform a
re-scaling of the coordinates using

x = δX,
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assuming that X = O(1) as ϵ → 0. The inner solution is written as
y(δX) = Y (X), and the differential equation (3.13.1) changes to

ϵ

δ2
YXX +

2

δ
YX + 2Y = 0. (3.5)

The dominant balance is established from the first two terms and hence
we select δ = ϵ. Thus, the resultant inner problem is to determine

Y ′′ + 2Y ′ + 2ϵY = 0,

Y (0) = 0,
(3.6)

and subject to appropriate conditions that ensure the inner solution
matches smoothly with the outer solution. Again solving the leading-
order equation yields

Y0(X) =
C1

2

(
1− e−2X

)
= C1e

−X sinh(X), (3.7)

after imposing the boundary condition Y0(0) = 0. This leaves a single
constant of integration, C1. In order for the leading-order inner solu-
tion to match the leading-order outer solution, we impose the Prandtl
matching condition of

lim
X→∞

Y0(X) = lim
x→0

y0(x).

From (3.73.7) and (3.43.4), we see that C1 = 2e. A comparison of the leading-
order inner and outer solutions, as compared to the full solution is
shown in fig. 3.23.2.0 1
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Figure 3.2: Leading-order outer
solution (thick) and leading-
order inner solution (thick) vs.
numerical solution with ϵ = 0.05
(dashed).
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Figure 3.3: Leading-order com-
position solution (thick) and vs.
numerical solution with ϵ = 0.05
(dashed).

It is possible to construct a uniformly valid composite solution by
adding the inner and outer solutions and subtracting the overlap. This
yields

yunif ∼ e
(
1− e2x/ϵ

)
+ e1−x − e, (3.8)

and this approximation is shown in fig. 3.33.3. A larger graphic is shown
in fig. 3.43.4.
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Figure 3.4: Leading-order inner and outer asymptotic approximations (dashed)
compared with the full numerical solution (solid) at ϵ = 0.05.
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3.2 matching using an intermediate region

Let us proceed to higher-order in the above problem. From (2.12.1), at
next order in the outer region, we seek to solve y′1+ y1 = −y′′0/2 subject
to y1(0) = 0. Similarly, from (3.63.6), at next order in the inner region,
we see to solve Y ′′

1 + 2Y ′
1 = −2Y0 subject to Y1(0) = 0. Together with

our previous leading-order approximations, this yields

y(x) ∼
[
e1−x

]
+ ϵ

[
1

2
(1− x)e1−x

]
, (3.9)

Y (X) ∼
[
e(1− e−2X)

]
+ ϵ

[
B(1− e−2X)−Xe(1− e−2X)

]
, (3.10)

where B is now the unknown constant to be determined by matching.
Already at O(ϵ), notice that the matching of inner and outer asymptotic
expansions beyond the leading-order term can be quite complicated.
The main difficulty is that as x → 0 from the outer region and as
X → ∞ from the inner region, the asymptotic expansion loses its
well-ordered nature. Both outer and inner expansions are not uniformly
valid as ϵ→ 0. Thus when matching, both terms at O(1) and O(ϵ) in
one region may contribute to terms at O(ϵ) in another.

One way to proceed is to introduce an intermediate scaling. We
introduce an intermediate variable, η defined by

x = ηϵα = ϵX where 0 < α < 1.

We then take ϵ → 0 with η fixed and this causes x → 0 and X → ∞.
In ordering the following terms, it is useful to consider a specific value
of, say, α = 1/2. From (3.93.9) we get

yout =

[
e− ex︸︷︷︸

(A)

+
ex2

2
+O(x3)

]

+ ϵ
e

2

[
1− 2x+

3x2

2
+O(x3)

]
+O(ϵ2). (3.11)

We then substitute x = ϵαη and obtain

yout ∼
[
e
]
+ ϵα

[
−eη

]
+ ϵ

[ e
2

]
+O(e2α, ϵ1+α). (3.12)

From the inner solution, (3.103.10), we note that all terms like e−2X

are exponentially small in the intermediate region, and will thus be
negligible to all algebraic orders of ϵ. We may then consider Y ≃
e + ϵ(B −Xϵ). Thus

Yin ∼
[
e
]
+ ϵα

[
−eη︸︷︷︸
(A)

]
+ ϵ

[
B
]
. (3.13)

Comparing (3.123.12) to (3.133.13), we see that

B =
e

2
.
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Figure 3.5: Exact (solid) vs. two-term inner and outer asymptotic approximations
(dashed) for ϵ = 0.05.

The two-term inner and outer expansions for the solution with ϵ = 0.05
is shown in fig. 3.53.5.

In studying this intermediate matching procedure, we remark two
issues. First, as inner and outer solutions are matched, it is normal for
terms in one asymptotic order to jump to another. For instance, the
term marked (A) in (3.113.11) is part of the leading-order approximation
y0 but is in the O(ϵ) approximation of Y1 in (3.133.13). This potentially
complex re-arrangement of orders is a staple of matched asymptotics
problems. Our second remark is that there are further terms in (3.123.12)
that cannot be matched to (3.133.13). These will involve higher-order terms
of Y .

3.3 van dyke’s matching rule

As we have seen, matching via an intermediate coordinate is a tedious
procedure. In his classical text, Van DykeVan Dyke [19751975] introduced a heuris-
tic now referred to as Van Dyke’s matching principle or Van Dyke’s
matching rule. To introduce the rule, we develop the following notation
following HinchHinch [19911991].

First, we define

OuP (y) = outer solution (x fixed, ϵ→ 0) retaining P + 1 terms

=
P∑
n=0

ϵnyn(x),

and OuP (f) is the P + 1-term outer approximation. Similarly,

InQ(y) = inner solution (X fixed, ϵ→ 0) retaining Q+ 1 terms

=

Q∑
n=0

ϵnYn(X),

and hence is the Q+ 1-term inner approximation.
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Van Dyke’s matching rule is then:

InQ(OuP y) = OuP (InQy).

In words:

The (Q+ 1)-term inner expansion of
[
the (P + 1)-term outer expansion

]
= the (P + 1)-term outer expansion of

[
the (Q+ 1)-term inner expansion

]
.

We demonstrate the Van Dyke matching rule with (3.93.9) and (3.103.10).
Beginning firstly with P = Q = 0, we have

In0Ou0y = In0[y0(x)]

= In0[e
1−ϵX ] (re-write in inner coordinates)

= In0[e(1− ϵX + . . .)] (re-expand with X fixed)

= e.

Similarly,

Ou0In0y = Ou0[Y0(X)]

= Ou0[e(1− e−x/ϵ)] (re-write in outer coordinates)

= e, (re-expand to one term)

which verifies our choice of coefficient in earlier applying Prandtl’s
matching rule. Proceeding to one order higher, we choose to apply Van
Dyke’s rule at P = Q = 1. Then

In1Ou1y = In1{y0(x) + ϵy1(x)}

= In1

{[
e1−ϵX

]
+ ϵ

[
1

2
(1− ϵX)e1−ϵX

]}
(re-write in inner coordinates)

= e + ϵ
[ e
2
− eX

]
. (re-expand to two terms)

While we have from the other side,

Ou1In1y = Ou1[Y0(X) + ϵY1(X)]

= Ou1

{[
e(1− e−2x/ϵ)

]
+ ϵ

[
B(1− e−2x/ϵ)− x

ϵ
e(1− e−2x/ϵ)

]}
(re-write in outer coordinates)

=
[
e− xe

]
+ ϵ

[
B
]

(re-expand to two terms)

=
[
e
]
+ ϵ

[
B − eX

]
(re-write in terms of X)

Comparing the two final lines above, we again see the required match
of B = e

2 . In general, it can be verified that Van Dyke’s matching can
also be applied in a diagonal fashion, with e.g. P = 0 and Q = 1.
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3.3.1 The failure of Van Dyke’s rule

A great deal has been written about the potential failure of Van Dyke’s
matching principle. There are extensive discussions in Van DykeVan Dyke [19751975,
Note 4, p. 220], HinchHinch [19911991, p. 72], and EckhausEckhaus [19941994]. The restriction
formulated by Van DykeVan Dyke [19751975, p. 221] is “Don’t cut between logarithms”.
The majority of cases illustrating a potential failure of the matching
rule involve the ambiguity of treating terms of O(ϵ log ϵ) in comparison
with terms like O(ϵ). Van Dyke’s maxim refers to the fact that it may
be necessary to consider these two orders as equivalent in order to
perform matching.111As HinchHinch [19911991, p. 72] notes:

“When applying Van Dyke’s rule,
good advice is to match only at
a break where the power of ϵ
changes, if that is possible.”

Apart from a subset of such problems, Van Dyke’s rule seems to
work as intended for most problems (that is certainly the case for all
the problems presented in this book); for problems where there is a
“failure”, it is often possible to re-interpret Van Dyke’s rule—such as in
the case of logarithmic orders.222As noted by EckhausEckhaus [19941994]:

“. . . the discussion is, to some ex-
tent, academic: any intelligent
practitioner of applied analysis
will find [there] way to correct
matching in a given problem, no
matter what [their] convictions
are. . . ”.

3.4 boundary layer location and its properties

In simple problems, such as the case of (3.13.1) it is possible to predict
the boundary layer location a priori. Consider the general second-order
linear example,

ϵy′′ + p(x)y′ + q(x)y = 0,

with y(0) = A and y(1) = B. As usual, we shall consider ϵ > 0 and
ϵ → 0. If there exists a boundary layer, then it must appear in a
location where the derivatives are large, and hence dominant balance
indicates

ϵy′′ ∼ −p(x)y′.
Four possibilities are sketched in the figures [—]. For the case of the
boundary layer on the left: (i) y′′ > 0 and y′ < 0; (ii) y′′ < 0 and y′ > 0,
the curvature and gradient must possess different signs in general, hence
this corresponds to situations where p > 0. The problem (3.13.1) is such
an example. For the case of the boundary layer on the right: (iii) y′′ > 0
and y′ > 0; and (iv) y′′ < 0 and y′ < 0, and thus the curvature and
gradient possess the same sign. Hence this corresponds to p < 0. If
there exists a point in the domain where p = 0, then internal boundary
layers are possible. In general, however, such geometric arguments are
not possible, certainly for the case of nonlinear differential equations
where boundary layers may occur in a spontaneous fashion (unpredicted
by the coefficients of the differential equation).

3.5 matching near singularities

The method of matched asymptotics will form an important set of tools
for exponential asymptotics, but we will not often encounter them in
the context of two-point boundary-value problems. Instead, we will
need the technique in order to study the outer- and inner-asymptotic
expansions near a general singularity.

We provide an example of this procedure. Consider333Compare to eqn (2.1) of
Akylas and YangAkylas and Yang [19951995]
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ϵ2u′′ − ϵu2 + u = sech(x). (3.14)

The boundary conditions are not important for the discussion, but they
can be considered to be u, u′ → 0 as x→ −∞. In the limit ϵ→ 0, we
first study the regular asymptotic expansion in powers of ϵ, with

u ∼ u0(x) + ϵu1(x) + ϵ2u2(x) + . . . (3.15)

Solving for the first few orders yields

u0(x) = sechx, (3.16a)

u1(x) = sech2 x, (3.16b)

u2(x) = 3 sech3 x− sechx tanh2 x. (3.16c)

We note that the leading-order approximation, sechx, is singular44 4sechx =
2

ex + e−x

at x =
(
2n+1

2

)
πi for n = 0,±1,±2, . . .. In fact, we notice that this

singularity is present in the first three orders in (3.163.16). Indeed, since
all subsequent orders depend on differentiation of the previous, the
singularities are these points along the imaginary axis are expected to
be present to all orders, and we furthermore argue that the power of
the singularity will grow as the order increases.

Let us consider the behaviour of the asymptotic solution as x→ πi/2.
Notice that

sechx ∼ − i

x− πi/2
+O(x− πi/2).

We ask the question of how close x must be to πi/2 before the second
term the asymptotic expansion (3.153.15) becomes of the same order as
first. Equating u0 = O(ϵu1), we see that

1

x− πi/2
= O

(
ϵ

(x− πi/2)2

)
,

and hence it is when x− πi/2 = O(ϵ), that the expansion (3.153.15). We
then say that the boundary layer is of size O(ϵ). Within the layer,
it can be verified that all the terms of (3.153.15) re-combine to be of the
same order of magnitude. This rationalisation of the breakdown of the
asymptotic expansion is important enough to highlight:

Remark 3.1 (Re-ordering of terms in the boundary layer)
In general, the location of a boundary layer near a singularity can
be predicted by examining where terms of an asymptotic expansion
become of equal size.

We wish to develop the inner solution within the boundary layer.
Based on (3.16a3.16a), we intuit that in this region, u = O(1/ϵ). Thus we
re-scale the independent and dependent variables as

x =
πi

2
+ ϵX and u(x) =

U(X)

ϵ
, (3.17)

with X and U assumed to be O(1) in the boundary layer. The differen-
tial equation (3.143.14) gives

U ′′ − U2 + U = ϵ sech

(
πi

2
+ ϵX

)
= − i

X
+ ϵ2

[
iX

6

]
+O(ϵ4). (3.18)
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We shall provide an example of the asymptotic matching between
inner and outer regions by examining the leading-order problem:

U ′′
0 − U2

0 + U0 = − i

X
. (3.19)

The nonlinear differential equation does not have an obvious closed-form
solution, but we seek to determine its asymptotic behaviour in the limit
that the outer region is approached, or X → ∞. The limit of X → ∞
is a regular point and the solution can be expanded into a Taylor series,

U0(X) =

∞∑
n=0

An
Xn

as X → ∞.

Substitution into the differential equation produces the following
recurrence relations:

−A2
0 +A0 = 0

−2A0A1 +A1 = −i,

(n− 2)(n− 1)An−2 −
n∑

m=0

AmAn−m +An = 0, n ≥ 2.

(3.20)

Notice in the outer region, the leading-order solution is u0 = sechx ∼
−i/(ϵX). Since U is scaled according to (3.173.17), then we expect for
A0 = 0. Solving for the first few orders yields A0 = 0, A1 = −i,
A2 = −1, A3 = 4i, and thus,

U0 = − i

X
− 1

X2
+

4i

X3
+O

(
1

X4

)
, (3.21)

represents the outer limit of the leading-order inner solution.
We finally demonstrate how the outer solutions, (3.163.16) relate to the

leading-order inner solution (3.213.21) according to the Van-Dyke matching
rule. With only a single order of the inner solution, we thus consider
the Van-Dyke matching rule with Q = 0.

First with P = 0 and Q = 0,

In0Ou0y = In0[u0(x)]

= In0

[
sech

(
πi

2
+ ϵX

)]
(re-write in inner coordinates)

= − i

ϵX
(re-expand to one term).

Similarly,

Ou0In0u = Ou0

[
U0(X)

ϵ

]
= Ou0

[
1

ϵ

∞∑
m=0

Am
(x/ϵ)m

]
(re-write in outer coordinates)

= − i

x
(re-expand to one term),

and hence Van-Dyke matches to leading order. The same procedure
can be carried out to verify that matching holes for (P,Q) = (1, 0) and
(P,Q) = (2, 0) and so forth.
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3.6 further references

The golden age of matched asymptotics was the 1950s [HolmesHolmes, 20122012]
and two classic and excellent references from that era that signifi-
cantly develop the theory in a form familiar to our presentation is
Van DykeVan Dyke [19751975] and ColeCole [19681968]. The latter has been updated into
Kevorkian and ColeKevorkian and Cole [20132013]. The modern treatments by HolmesHolmes [20122012]
and HinchHinch [19911991] are also excellent. As always Bender and OrszagBender and Orszag
[19991999] provide a compact collection of problems.

Because of its importance in singular perturbation theory and in
connection to the development of aerodynamics, much has been written
about the history of matched asymptotic expansions and boundary
layer theory. The reviews by ColeCole [19941994], Van DykeVan Dyke [19941994], O’MalleyO’Malley
[20142014], O’Malley JrO’Malley Jr [20102010] discuss the fascinating history.

3.7 exercises
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