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In these first chapters, we review the essential details of asymptotic
analysis. For the most part, we assume that the reader is familiar with a
typical one-semester course on asymptotics or perturbation theory—the
purpose of this review is to largely serve as a refresher and to provide a
reference point to key terminology and definitions.

To begin, we motivate the notion of an asymptotic expansion. Con-
sider the solution of the following boundary-value problem for a real-
valued function y = y(x):

ϵy′′ + 2y′ + 2y = 0, 0 < x < 1

y(0) = 0 and y(1) = 1,
(2.1)

where ϵ > 0 is a small parameter. We may alternatively write y = y(x; ϵ)
to explicitly note the ϵ dependence. The boundary-value problem can
be numerically computed using standard techniques.11 Three numerical 1We have used Matlab’s

bvp4c function to compute the
solutions in the image.

solutions are shown in fig. 2.12.1 at decreasing values of ϵ = 0.3, 0.1, and
0.01.
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Figure 2.1: Solutions of (2.12.1)
for three small values of ϵ.

Observe that as ϵ tends to zero, the solution of the boundary-
value-problem seems to approaches a configuration with a well-defined
structure. In particular, away from x = 0, the profile approaches a gently
sloped curve. Our desire is to produce a systematic approximation
procedure that describes this limit, writing, e.g.

y = y0(x) + ϵy1(x) + ϵ2y2(x) + . . . (2.2)

Thus the solution is approximated by series expansion in powers of the
small parameter, ϵ. We expect that the determination of the individual
terms of the sum (2.22.2) will be easier than attempting to determine the
full un-approximated solution. At the same time, we see from fig. 2.12.1
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that for small values of ϵ, the solution exhibits a boundary layer near
x = 0—that is, a region where it rapidly changes in value or gradient.
The goal of an asymptotic procedure should be to develop accurate
approximations of the solutions in both the regions near x = 0 and
away from x = 0.

2.1 asymptotic equivalence and notation

Our previous example of the approximation (2.22.2) is an example of a
parametric expansion for y, where the solution can be regarded as a
function of two variables x and ϵ, with the latter considered to be a
small number. In this book, we will generally work with functions of
this form. Below, for simplicity of presentation, we state the definitions
for a function such as f(z; ϵ) where z is assumed to be fixed through
the limiting process of ϵ → 0.22 Hence below we write, e.g. f(ϵ) and2It is typical to first intro-

duce asymptotic expansions in
the context of functions, say f(x)
as x → 0 or as x → ∞ and
to later present the case of a
parametric function, f(x; ϵ) de-
termined by a problem with an
additional parameter. In such
cases, the definitions are equiv-
alent to setting, e.g. x = ϵ or
x = 1/ϵ. This is the procedure
of authors such as HinchHinch [19911991].

g(ϵ), and temporarily drop dependence on other variables.

Definition 2.1 (Asymptotic equivalence)
Functions f(ϵ) and g(ϵ) are asymptotically equivalent33 in the limit

3We often say that f “be-
haves like” g or f “twiddles”
g. In the mathematical sciences,
there is further ambiguity with
some researchers writing, for in-
stance, that ϵ2 ∼ 2ϵ2 as ϵ → 0.
Thus, for some researchers, the
∼ relationship is specified up to
a constant pre-factor.

ϵ→ 0 if

lim
ϵ→0

f(ϵ)

g(ϵ)
= 1.

This relationship is denoted f(ϵ) ∼ g(ϵ).

Note that asymptotic equivalence does not necessarily mean that f
and g have the exact same functional form in the limit; only that they
have the same rate of growth or decay. Examples of asymptotically
equivalent functions in the limit ϵ→ 0 are

1

ϵ
∼ 1 +

1

ϵ
, sin(ϵ) ∼ ϵ, eϵ ∼ 1 + ϵ+

1

2
ϵ2, tan(π2 − ϵ) ∼ 1

ϵ
.

Asymptotic equivalence is also commonly written in the limit a variable
tends to infinity. For instance, we write

x2 ∼ x4 + 2x2 + 1

x2 + sin(x)
as x→ ∞,

and the definition 2.12.1 is extended a similar way to x→ ∞, or alterna-
tively by setting ϵ = 1/x→ 0.

Definition 2.2 (Big O notation)
The ‘big O’ is used to state that a function f(ϵ) is at most of order g(ϵ)
as ϵ→ 0. That is f = O(g) as ϵ→ 0 if∣∣∣∣f(ϵ)g(ϵ)

∣∣∣∣ < M, as ϵ→ 0,

where M is an arbitrary real constant.
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Definition 2.3 (Little O, ≫ and ≪ notation)
The ‘little O’ is used to state that a function, say f(ϵ) is of smaller
magnitude than another, say g(ϵ) as ϵ→ 0. Symbolically we shall write
f = O(g) as ϵ→ 0 if ∣∣∣∣f(ϵ)g(ϵ)

∣∣∣∣ → 0, as ϵ→ 0.

In this case, we also write f ≪ g and say that “f is much less than g”.
Or equivalently, we write g ≫ f and we say that “g is much greater
than f”.

2.2 regular and singular perturbation problems

In general, the goal of asymptotic analysis is to characterise the solution
of a problem (e.g. an algebraic equation, a differential equation, a
recurrence relation, etc.) in the limit that certain parameters tend to
zero or infinity. A singular perturbative problem is one in which the
solution at the limit point, say ϵ = 0, differs fundamentally from the
solution in the limit ϵ → 0. A problem is regularly perturbed in the
limit ϵ→ 0 if it is not singular. This terminology is best demonstrated
with examples.

Example 2.1 (A regular algebraic problem)
Consider the roots of x2−x+ ϵ = 0 where ϵ is small. In the limit ϵ→ 0
(ϵ ̸= 0), then we have a quadratic with two roots. If we now set ϵ = 0
then we again have a quadratic with two roots. Hence this is a regular
problem; the introduction of a small ϵ only serves to shift each of the
two roots by a small amount.

Example 2.2 (A singular algebraic problem)
Consider now ϵx2 + x + 1 = 0. In the limit ϵ → 0 (ϵ ̸= 0) we have a
quadratic with two roots, but if we set ϵ = 0 then the problem has only
one root, with x = −1. This is a singularly perturbed problem. In the
limit of ϵ→ 0, one of the two roots tends to infinity.

Example 2.3 (A singular differential equation)
The boundary-value problem in (2.12.1) is an example of a singular dif-
ferential equation. Setting ϵ = 0 results in a first-order differential
equation and hence only one boundary condition is typically required
for a unique solution. However for any ϵ ̸= 0, the differential equation
is of second order and hence requires two boundary conditions. Thus
problem for ϵ = 0 differs fundamentally from the problem for ϵ ̸= 0.

2.3 asymptotic expansions for algebraic equations

We demonstrate how asymptotic analysis is used to develop approxima-
tions to the two examples above.

Example 2.4 (The expansion method for a regular problem)
Consider the regularly perturbed quadratic equation

x2 − x+ ϵ = 0, as ϵ→ 0, (2.3)
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introduced in example 2.12.1. The exact solution of this quadratic is given
by

x = 1
2 ± 1

2

√
1− 4ϵ.

As ϵ→ 0, our two solutions tend to 0 and 1, which are the unperturbed
roots. By expanding the exact solution in a series of increasing powers444By Taylor expansions, note

that (1− 4ϵ)1/2 = 1− 2ϵ− 2ϵ2 +
O(ϵ3).

of ϵ we intuit that the two roots can be expanded into a series in integer
powers of ϵ. Thus, we shall write

x =
∞∑
n=0

ϵnxn = x0 + x0 + ϵx1 + ϵ2x2 + ϵ3x3 +O(ϵ4), (2.4)

and attempt to solve for x0, x1, . . .. We substitute this into (2.32.3) and
group terms for each order of ϵ we have

(x20 − x0) + (2x0x1 − x1 + 1)ϵ+ (x21 + 2x0x2 − x2)ϵ
2+

(2x0x3 + 2x1x2 − x2)ϵ
3 +O(ϵ4).

Equating each respective order of ϵ to zero then yields

ϵ0 : x20 − x0 = 0 ⇒ x0 = 0 or x0 = 1,

ϵ1 : 2x0x1 − x1 + 1 = 0 ⇒ x1 = 1 or x1 = −1,

ϵ2 : x21 + 2x0x2 − x2 = 0 ⇒ x2 = 1 or x2 = −1,

ϵ3 : 2x0x3 + 2x1x2 − x2 = 0 ⇒ x3 = 2 or x3 = −2.

The procedure can be continued ad infinitum. Notice that our values
of x0 are the unperturbed roots for the equation. Using the above we
can conclude that the estimates for the solutions are thus

x = ϵ+ ϵ2 + 2ϵ3 +O(ϵ4),

x = 1− ϵ− ϵ2 − 2ϵ3 +O(ϵ4).

The graph showing the error of the convergent series approximation for
the root near x = 1 is shown in fig. 2.22.2.

Why choose integer powers of
ϵ? In Example 2.42.4, we have
taken the expansion of the
roots in integer powers of ϵ. In
many cases, the appropriate
expansion can be observed by
examining the remainder; for
instancing, substituting x ≈
x0 = −1 into ϵx2+x+1 = 0, we
observe an unbalanced term of
O(ϵ) on the left hand-side. For
a more developed explanation
of this concept see HinchHinch [19911991]
Section 1.3.

Example 2.5 (The expansion method for a singular problem and the method of dominant balance)
The expansion in Example 2.12.1 was straightforward. Consider now the
singular problem mentioned of Example 2.22.2, where we seek the roots of

ϵx2 + x+ 1 = 0, as ϵ→ 0. (2.5)

If we naively set ϵ = 0 in (2.52.5), we obtain only a single root near x ∼ −1.
Again, we may expand x as in (2.42.4) and solve for each term; this yields
the asymptotic expansion of x = −1− ϵ− 2ϵ2 + . . .

It remains to study the other root. Notice that if |x| is large, then
the assumption that ϵx2 is small may no longer be true. Thus as ϵ→ 0,
we conjecture that the secondary root has |x| → ∞. We thus propose
the rescaling

x =
X

δ
(2.6)
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Figure 2.2: Error of the first root, approximated as x = 1− ϵ− ϵ2+ . . . corresponding
to the quadratic x2 − x+ ϵ = 0.

where δ → 0 as ϵ→ 0. We seek to choose δ appropriately so that the
re-scaled root, X, remains O(1) as ϵ→ 0. In essence, this is a re-scaling
of the coordinate, x, so that under the new coordinate system, the
desired root is fixed as ϵ→ 0. Now equation (2.52.5) becomes

ϵ

δ2
X2︸ ︷︷ ︸
①

+
1

δ
X︸︷︷︸
②

− 1︸︷︷︸
③

= 0. (2.7)

The method of dominant balance identifies which terms of (2.72.7) can be
taken to be negligible, and which terms are involved in establishing the
leading-order equality. There are four possible dominant balances.55 It 5We can have the four possi-

bilities of [1]∼[2]; [2]∼[3]; [1]∼[3];
[1]∼[2]∼[3].

is sensible to include ① (since this term is necessary in order to involve
the quadratic factor). And since x is large, then we expect ② ≫ ③. Let
us thus posit the leading-order balance of ① ∼ ②. Then

ϵ

δ2
X2 ∼ −1

δ
X,

and we thus choose δ = ϵ, which yields the leading-order approximation
of X ∼ −1. Notice with this choice of δ, then ② = O(X/ϵ) while ③ is
O(1). This confirms a posteriori that

① ∼ ② ≫ ③,

as we originally posited. The remaining three possible dominant bal-
ances can be discounted by reaching contradictions. We may now return
to (2.72.7), with δ = ϵ, and study

X2 +X − ϵ = 0. (2.8)

This is now a regular perturbation problem. We may then pose the
expansion X = X0 + ϵX1 + ϵ2X2 + . . . and solve for the asymptotic
approximation term-by-term. The first three orders yields X ∼ −1−
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ϵ+−2ϵ2. Thus the two roots of (2.52.5) are

x = −1− ϵ− 2ϵ2 +O(ϵ3),

x =
1

ϵ

[
−1− ϵ− 2ϵ2 +O(ϵ3)

]
.

It is observed that both series approximations are divergent. For
instance, the coefficient of ϵ8, ϵ9, and ϵ10 for both series are respectively,
∓1430,∓4862,∓16796 with the negative sign for the root near −1. A
graph of the errors associated to using the approximation near the
root near x ∼ −1 is shown in fig. 2.32.3. The divergence of the singular
approximation can be remarked in the figure for the series with ϵ = 0.3.
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Figure 2.3: Error of the first root, approximated as x = −1−ϵ−2ϵ2+. . . corresponding
to the singular quadratic ϵx2 + x+ 1 = 0. The divergence is remarked for the curve
corresponding to ϵ = 0.3.

2.3.1 Newton graphs

There is a graphical procedure by which the method of dominant balance
can be visualised. Instead of the re-scaling (2.62.6), let us set x = X/ϵα

for some α to be determined. Then (2.52.5) yields

ϵ1−2αX2 + ϵ−αX − ϵ0 · 1 = 0. (2.9)

We then plot a graph with the three ϵ exponents of {1 − 2α,−α, 0}.
Intersections between the three curves correspond to possible dominant
balances. In order to be a consistent dominant balance, the remaining
curves must lie higher than the intersection. From the graphic, we thus
see that the two possible dominant balances are α = 0 and α = −1.

2.4 asymptotic expansions

In the previous section, we provided two examples of an asymptotic
approximation for the solution to an algebraic equation. We wish to
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define more rigorously this notion of an asymptotic approximation. For
ease of notation in the following definitions, we shall index sequences
using the non-negative integers, n ∈ Z∗ = {0, 1, 2, . . .}, and below, we
always consider the limit of ϵ→ 0.

Typically, a “complete” asymptotic approximation is associated
with a countably infinite number of terms indexed in the above manner.
However, one can certainly adapt the below definitions to include the
cases of a finite number of terms (cf. HinchHinch 19911991).

Definition 2.1 (Asymptotic sequence)
A sequence {δn(ϵ)}n≥0 is said to be asymptotic sequence if, for all
n > 0, each subsequent term in the sequence is much smaller than the
previous, δn+1 ≪ δn. Equivalently

δn+1(ϵ)

δn(ϵ)
→ 0 as ϵ→ 0. (2.10)

We might alternatively write this as δn+1 = o(δn).

Definition 2.2 (Asymptotic expansion/approximation)
Let {δn(ϵ)} be an asymptotic sequence. Let fn(ϵ) = anδn(ϵ) for given
constants an. We say that

∑∞
n=0 fn(ϵ) is an asymptotic expansion or

asymptotic approximation of f(ϵ) as ϵ→ 0 if, for all N > 1, we have

f(ϵ)−∑N−1
n=0 fn(ϵ)

fN−1(ϵ)
→ 0 as ϵ→ 0. (2.11)

Note that since

RN (ϵ) = f(ϵ)−
N−1∑
n=0

fn(ϵ) (2.12)

is the remainder66 after an N -term expansion, the above definition of 6To be consistent with later
notation, we define the remain-
der RN in association with the
asymptotic expansion truncated
after N terms.

an asymptotic expansion expresses the fact that RN ≪ fN−1, i.e. the
remainder is smaller than the last term included if ϵ is sufficiently small.
If the sum has this asymptotic property, then we write

f(ϵ) ∼
∞∑
n=0

fn(ϵ).

Remark 2.1 (Asymptotic progressions)
Standard asymptotic expansions typically involve sequences consisting
of integral or rational powers of ϵ. For instance, a common asymptotic
expansion is

∑∞
n=0 anϵ

n. More exotic expansions can involve logarithmic
terms, such as the nested expansion log(1/ϵ) + log(log(1/ϵ)) + . . . [cf.
[?, §1.4]], or expansions where the dependences of fn on ϵ cannot be
expressed in closed form77. 7An example of this occurs

in studying the asymptotic ex-
pansion near the crest of a steep
water waves (the Stokes wave).
See GrantGrant [19731973].

Remark 2.2 (Uniqueness of asymptotic approximations)
Given the asymptotic sequence {δn(ϵ)} used to approximate f(ϵ), then
the coefficients, an, in the approximation f ∼ ∑

anδn(ϵ) are unique.
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They can be determined inductively by

ak ≡ lim
ϵ→0

f(ϵ)−
k−1∑
n=0

anδn(ϵ)

δk(ϵ)
for k = 1, 2, 3, ...

with a0 = limϵ→0
f(ϵ)
δ0(ϵ)

. Note that two different functions may share
the same asymptotic approximation if they differ by a quantity smaller
than the last term in the approximation.

While we have uniqueness for a given asymptotic sequence, the function
f may have many asymptotic approximations, for instance as ϵ→ 0

tan ϵ ∼ ϵ+ 1
3ϵ

3 + 2
15ϵ

5 ∼ sin ϵ+ 1
2(sin ϵ)

3 + 3
8(sin ϵ)

5,

are two distinct expansions to tan ϵ.

Remark 2.3 (Non-analyticity)
Let us consider the asymptotic expansions of f(ϵ) = exp(ϵ) and g(ϵ) =
exp(ϵ)+exp(−1/ϵ) as ϵ↘ 0 (ϵ→ 0 through positive values only). Then
note

exp(ϵ) ∼
∞∑
n=0

ϵn

n!
and exp(ϵ) + exp(−1/ϵ) ∼

∞∑
n=0

ϵn

n!
,

and hence f and g possess the same asymptotic expansion. This does
not contradict Remark 2.22.2 since f and g differ by a quantity which is
not analytic. They have identical asymptotic power series, but are not
equal functions.

Remark 2.4 (Manipulations of asymptotic approximations)
Asymptotic expansions can be added, subtracted, multiplied and di-
vided. They can also be integrated term-by-term with respect to ϵ
resulting in the correct asymptotic expression for an integral. If the
function f(ϵ) is analytic in some domain in the complex ϵ-plane, then
we can differentiate the asymptotic approximation in this domain also.
However we cannot safely differentiate an approximation otherwise.

Remark 2.5 (Asymptotic expansions in other limits)
In the definitions above, we have formulated asymptotic expansions
in the limit ϵ → 0 since this provides a common framework for most
applications in perturbation theory. These definitions can be adapted
for the asymptotic expansions of e.g. f(z) as z → z0 or z → ∞. In
most cases, expansions in other limits can be re-formulated as an ϵ→ 0
limit through a variable transformation. Note that it is also common
to develop asymptotic expansions for limiting processes over multiple
variables. For instance, one can study f(z; ϵ) as z → ∞ and ϵ → 0.
In such cases, there may exist subtlety to the approximation process
dependent on the rate that each individual parameter is taken to its
limit. This subtlety is referred to as a problem of distinguished limits.
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2.5 convergence and divergence

One of the core themes that underlies much of the study of exponential
asymptotics is the generic divergence of singular asymptotic expansions.
Although the typical mathematics education in analysis often begins
from the investigation of convergent series, convergence is perhaps
less useful in practice than we are led to believe. The unreasonable
effectiveness of divergent series in providing accurate approximations
has led to a degree of folklore88. We demonstrate this via an example. 8[BoydBoyd, 19991999, p. 9] has

coined Carrier’s Rule after
George F. Carrier “Divergent se-
ries converge faster than conver-
gent series because they don’t
have to cover”.

Consider an approximation of the error function [Abramowitz and StegunAbramowitz and Stegun,
19831983, Chap. 7]:

erf(z) =
2√
π

∫ z

0
e−t

2
dt, (2.13)

where z is considered to be real. First, if the exponential e−t
2
is

expanded about t = 0 and the integral is evaluated term-by-term, we
obtain

erf(z) =
2√
π

(
z − z3

3
+
z5

10
− z7

42
+O(z9)

)
=

2√
π

∞∑
n=0

(−1)nz2n+1

(2n+ 1)n!
.

(2.14)

By the ratio test99, the above series approximation is convergent for all 9Note that the absolute ratio
of series coefficients, |an+1/an|
yields |z2(2n+ 1)/[(2n+ 3)(n+
1)]| → 0 for any fixed value of z
and for n→ ∞

values of z. Note that the power series near z = 0 is an asymptotic
expansion for z = ϵ as ϵ→ 0.

On the other hand, if the behaviour as z → ∞ is first extracted
from the integral, and the result integrated-by-parts, we obtain

erf(z) =
2√
π

(∫ ∞

0
−
∫ ∞

z

)
e−t

2
dt

= 1− e−z
2

z
√
π

(
1− 1

2z2
+

1 · 3
(2z2)2

− 1 · 3 · 5
(2z2)3

+ . . .

)
,

= 1− e−z
2

z
√
π

∞∑
n=0

(−1)n(2n− 1)!!

(2z2)n

(2.15)

and a resultant series approximation that is divergent for all values of z. Note that the double factorial
function is defined via m!! =
m(m− 2)(m− 4) . . . 1.

Examining fig. 2.42.4 of the error (exact value minus approximate value)
as a function of the number of terms kept in each approximation, we
see in fact that the convergent series converges much too slowly to be
of practical use for most values of z. For instance, when z = 5, the
convergent series contains an error of approximately 108 at a truncation
of N = 20 terms. The divergent series, however, is accurate to 1015

with N = 1.
For a given value of z, the minimal error of the divergent series is

obtained at the optimal truncation point. Heuristically, this is found at
the value of N where adjacent terms are approximately equal in size,
or in this case ∣∣∣∣ (2n− 3)!!

2z2(2n− 1)!!

∣∣∣∣ = ∣∣∣∣2n+ 1

2z2

∣∣∣∣ ∼ 1.

When z = 5, the optimal truncation point is N = ⌈24.5⌉.
“The idea that a function could
be determined by a divergent
asymptotic series was a foreign
one to the nineteenth century
mind. Borel, then an unknown
young man, discovered that
his summation method gave
the “right” answer for many
classical divergent series. He
decided to make a pilgrimage
to Stockholm to see Mittag-
Leffler, who was the recog-
nized lord of complex analysis.
Mittag-Leffler listened politely
to what Borel had to say and
then, placing his hand upon
the complete works by Weier-
strass, his teacher, he said in
Latin, “The Master forbids it.”
This quotation is attributed to
Mark Kac and given on p. 38
of Reed and BarryReed and Barry [19721972].
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Figure 2.4: The vertical axis
indicates the error of the ap-
proximation of erf(z) as a func-
tion of the number of terms
included when z = 5. The top
curve is the convergent series
(2.142.14) and the bottom curve is
the divergent series (2.152.15).

2.6 further references

Many undergraduate courses will introduce perturbation theory through
the analysis of algebraic equations, and HinchHinch [19911991] develops the initial
theory in this fashion. A number of our presentation of the basic
definitions can also be found in MurrayMurray [20122012] and HolmesHolmes [20122012],
the latter book providing an excellent introduction to the method of
dominant balance. The book by WhiteWhite [20102010] also provides a clear,
succinct introduction to elementary asymptotic analysis.
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