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1.1 motivation

We provide a simple, yet deep, example of exponential asymptotics in
the following classic example of a geometric model for crystal growth
first proposed by Brower et al.Brower et al. [19831983, 19841984], and then subsequently
studied by Kruskal and SegurKruskal and Segur [19911991]. The problem is to consider the
motion of the solid-liquid interface of a growing dendritic crystal where
the dynamics are governed purely by the local geometry of the interface.

For the two-dimensional model of a crystal as shown in fig. 1.11.1, let
ϕ be the angle of the normal of the interface to the x-axis, and depends
on the arclength s along the interface. We assume that vn, the normal
velocity of the interface depends on a function of the local curvature
κ = dϕ

ds and its derivatives.
Once non-dimensionalised, the most basic assumption is that

vn = κ+ ϵ2κss, (1.1)

where the addition of the even differential in κ stabilises the interface
at short distances and plays the role of surface tension [HakimHakim, 19911991].
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Figure 1.1: Geometry of the model for crystal growth. The arclength is such that
s→ −∞ on the lower side and s→ +∞ on the upper side. The interface is assumed
to move in the x direction with velocity v.

We consider a further simplified problem where the crystal moves
at a steady and constant unit velocity, where the normal velocity is
vn = cosϕ. The problem is thus to determine the interface angle ϕ as a
function of the arclength s. The interface is assumed to be governed by

ϵ2
d3ϕ

ds3
+

dϕ

ds
= cosϕ, (1.2a)

ϕ→ ±π
2

as s→ ±∞. (1.2b)

With ϵ > 0 small, we consider expanding the solution as a regular
expansion:

ϕ(s) = ϕ0(s) + ϵ2ϕ1(s) + . . . (1.3)
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Noting that
cosϕ = cosϕ0 − ϵ2ϕ1 sinϕ0 +O(ϵ4), (1.4)

we have from (1.2a1.2a), the leading-order problem:

ϕ′0 = cosϕ0, (1.5)

We can verify11 that the solution is given by1See exercises.

ϕ0(s) = −π
2
+ 2 tan−1(es), (1.6)

which satisfies the necessary boundary condition of ϕ0 → −π/2 as
s→ −∞. Note that the above solution was developed for a first-order
differential equation, and yet also ϕ0 → π/2 as s → ∞, which may
seem either fortuitous or suspicious.

The next order terms, from (1.2a1.2a) yields

ϕ′1 + ϕ1 sinϕ0 = −ϕ′′′0 , (1.7)

and this can again be solved explicitly, yielding:

ϕ1(s) = −(2 + s− 2 tanh s+ C) sech s, (1.8)

where the constant of integration, C, is left undetermined at this stage.
Notice that ϕ1 → 0 as s → ±∞ and hence the perturbative solution
at this stage generically satisfies the boundary condition regardless of
the choice of C (which fixes the origin). It can furthermore be shown
[Kruskal and SegurKruskal and Segur, 19911991] that a solution can be determined at every
order that satisfies the boundary conditions.

However, examination of the numerical solutions shows a different
story. In fig. 1.21.2, the differential equation (1.2a1.2a) is solved using a
standard finite difference numerical scheme over the interval −10 ≤
s ≤ 20. The solution is initiated with approximate numerical boundary
conditions of ϕ = 10−4, ϕ′ = ϕ′′ = 0 at the left endpoint, s = −10.
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Figure 1.2: Numerical solution of (1.2a1.2a) with ϵ = 0.01 with approximate boundary
conditions on the left endpoint, s = −10.

We observe that regardless of the value of ϵ, it seems that numerical
solutions always exhibit oscillations in the far-field. Once measured,
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it can be verified that, at a fixed value of s, these oscillations are
exponentially small as ϵ → 0. Therefore, there exists a contribution
that is beyond-all-orders of the regular asymptotic expansion. Later,
we will show that:

ϕ ∼
[
ϕ0(s) + ϵ2ϕ1(s) + ϵ4ϕ2(s) + . . .

]
+
A

ϵγ
e−k/ϵ

√
cosh(s) cos(s/ϵ+ ψ), (1.9)

with k > 0, and A, γ, and ψ are constant.

There are several key points we want to highlight in this example.

Divergence. If we examine the leading-order solution, (1.61.6), we
notice that it is smooth and infinitely differentiable along the real s-axis.
However, since

tan−1(u) =
i

2
log

(
u+ i

u− i

)
, (1.10)

the arctan function is singular wherever its argument is ±i. Thus the
ϕ0 contains (logarithmic) singularities in the complex plane wherever
es = ±i or firstly at s = ±πi/2 and the subsequently spaced 2π up
and down the imaginary axis. Similarly at the next order ϕ1 contains
singularities such as ϕ1 ∼ c(s− πi/2)−2.

Considering the procedure in deriving the additional terms of the
differential equation, we remark that it involves terms such as

ϕ′′′n−1 + ϕ′n = . . . (1.11)

therefore, obtaining the nth term of the approximation typically involves
differentiation of the previous order twice. At next order, we might
expect ϕ2 to contain a factor such as 2 · (s− πi/2)−4. Hence each order
beings additional multiplicative factors of ever-increasing number, and
a greater power in the denominator. We might thus conjecture that,
no matter what value of s is chosen, |ϵnϕn| → ∞ as n → ∞—at any
chosen fixed ϵ.

This illustrates a fundamental fact of almost all singularly perturbed
differential equations that we shall study: their regular asymptotic
expansions diverge. The question, then, of the sensibility of using a
divergent expansion in order to capture a (presumably well-defined)
solution of a physical problem is raised.

Beyond-all-orders. Above, we have only shown the leading contri-
bution of the beyond-all-orders contribution. Indeed, there are terms

∼ e−k/ϵ

ϵγ

[
A0(s) + ϵ2A1(s) + ϵ4A2(s) + . . .

]
. (1.12)

Moreover, because of nonlinearity in the ODE, we know that there are
likely terms of order e−2k/ϵ, e−3k/ϵ, . . . There indeed seems to be quite
a fearsome structure (or tower) of asymptotic terms beyond-all-orders
of the routine regular expansion.
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Does ‘exponentially-small’ mean ‘negligible’? Here we have
a clear example where exponential smallness does not mean negligi-
ble. In this case, the situation is worse: the

√
cosh(s) grows to be

exponentially dominant as s→ ∞, strongly invalidating the necessary
boundary conditions. However, even if not for this latter factor, the
non-decaying nature of the exponentially-small ripples with factor e−k/ϵ

would invalidate the boundary conditions. This is a clear illustration
that the exponential asymptotics is by no means negligible, and in fact,
it is central to the existence (or non-existence) of solutions in this case.

1.2 exercises

1. Solve for the leading-order crystal-growth solution (1.61.6).
Note the antiderivative of sec(u) = 1/ cos(u) is log |sec(u) +

tan(u)|+ C. It is useful to also use the trigonometric identities:

sin θ =
1√

1 + x2
and cos θ =

x√
1 + x2

,

where θ = tan−1(x) = tan−1(es). Also arctanu = i
2 log

(
u+i
u−i

)
.

2. Write and implement your own finite difference solver in order to
study numerical solutions of (1.21.2). Investigate the effect of the
domain size, initial boundary conditions, and ϵ on the solutions.
Is it possible to measure the amplitude of the downstream waves
in order to intuit the necessary asymptotic form as ϵ→ 0?

3. By linearising the ODE (1.2a1.2a) as s→ ±∞ about ±π/2, develop
the linear terms, i.e. ϕ = ±π/2 + f(s) where f is small. What
does the possible solutions for f inform you about the required
boundary conditions?
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