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The dynamics of a thin liquid film on the underside of a curved cylindrical substrate
is studied. The evolution of the liquid layer is investigated as the film thickness
and the radius of curvature of the substrate are varied. A dimensionless parame-
ter (a modified Bond number) that incorporates both geometric parameters, gravity,
and surface tension is identified, and allows the observations to be classified ac-
cording to three different flow regimes: stable films, films with transient growth of
perturbations followed by decay, and unstable films. Experiments and linear stabil-
ity theory confirm that below a critical value of the Bond number curvature of the
substrate suppresses the Rayleigh-Taylor instability. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4876476]

When a dense fluid is accelerated into a fluid of lower density, the interface between the two
fluids becomes unstable. For over a century, the gravitational version of this problem – the Rayleigh-
Taylor instability – has been studied extensively, both experimentally and theoretically,1–3 because
the phenomenon is ubiquitous in nature and technology.4–6 In general, these studies of gravitationally
driven instabilities are performed in a planar geometry that is either horizontal or inclined.7–9 Here
we study the Rayleigh-Taylor instability in a curved geometry and identify conditions where the
curvature of the substrate suppresses the instability.

One application for film flow on a curved surface concerns the development of plasma-facing
components for fusion energy reactors. In such systems it is necessary to protect the plasma and
the container wall from each other. It has been suggested that a film of liquid metal offers many
advantages over solids as a plasma-facing material.10, 11 For such a system to be successful, it must
operate in a regime where the film flowing along the underside of the curved surface remains stable.

Although most studies of thin film dynamics have considered flow along a planar substrate,
there is a small literature where the ideas are developed for curved substrates. Such studies include
the temporal evolution of two-dimensional thin liquid films, which exhibit thinning of the interface
near regions of large curvature,12 the flow along the interior surface of a cylindrical tube with a
weakly curved centerline,13 and the flow inside a rotating horizontal cylinder, e.g., Refs. 14–16.
A general set of equations for viscous flow of a thin film along a curved substrate was proposed
by Roy et al.17 and Howell,18 where the latter identified three distinguished limits, depending on
whether an appropriate dimensionless curvature of the substrate is small, nearly constant, or large
(see also Ref. 19).

In this letter, we study experimentally and theoretically the hydrodynamic stability of a sus-
pended thin liquid film under a curved surface. We use the thin-film equations, well-known from
viscous flow theory, to provide a description of the role of substrate curvature on the gravitationally
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FIG. 1. (a) Thin film flow on a circular cylinder and (b) schematic of the experimental setup. The substrate is formed from a
curved sheet with the axial direction (z) directed into the page.

driven flow of the film on the underside of a circular cylinder (Fig. 1(a)). These equations are solved
analytically in the crucial regime near the top of the cylinder. The analytical predictions are confirmed
by numerical solutions of the full equations. In addition, we perform experiments to measure the
evolution of the thin film shape for different aspect ratios between the film thickness and the radius
of curvature of the substrate formed from a curved sheet (Fig. 1(b)). Based upon the equations, we
identify a single dimensionless parameter B = ρgRhi/γ , a modified Bond number that governs the
behaviour of the flow and incorporates the surface tension γ , initial film thickness hi, and substrate
curvature R−1, where ρ is the density of the fluid and g is the gravitational acceleration. Below a
critical value of B, the film is stable to perturbations with a thickness that decreases monotonically
in time. For larger values of B, i.e., thicker films (or flatter substrates), the dynamics exhibit either
transient perturbation growth followed by decay, or instability via drop formation. The combination
of theory and experiments provides a relatively complete characterization of the Rayleigh-Taylor
instability of a liquid layer under a curved surface, and the manner in which substrate curvature can
stabilize the film.

We consider the flow of a thin liquid film initially placed on the underside of a curved substrate.
Here, we focus on the two-dimensional case where the substrate is cylindrical with constant curvature,
1/R > 0 (Fig. 1(a), left). However, the following theory is local in nature, and so is applicable to
any 2D substrate geometry with a local maximum and non-singular curvature. The film thickness
is denoted h(θ , t), with θ = 0 at the maximum point of the substrate. For the limit h/R � 1, with
subscripts denoting derivatives, the thin film equation on the underside of a cylindrical surface is (e.g.,
Refs. 8 and 20)

ht + 1

3μR

[
h3

(
γ

R
κθ + ρg

(
hθ cos θ

R
+ sin θ

))]
θ

= 0, (1)

where μ is the liquid viscosity and κ = R−2(hθθ + h) is the leading-order mean curvature of the
film, which accounts for the profile of the interface and the curvature of the substrate.

It is convenient to scale the film height by an initial average film thickness hi and time by the
gravitational relaxation scale μR/

(
ρgh2

i

)
. Then, Eq. (1) can be recast in dimensionless form as (we

retain the same variables)

ht + 1

3

[
h3

(
δ2

B
(hθθθ + hθ ) + δhθ cos θ + sin θ

)]
θ

= 0, (2)

where δ = hi/R is the aspect ratio of the film and B = ρgRhi/γ is the modified Bond number. For
many applications we expect δ � 1. We are now interested in examining the growth or decay of a
perturbation of the initial uniform profile, h(θ , 0) = 1. An example of such a profile, numerically
computed using Eq. (2), is shown in Fig. 2(a) (the details are presented in the numerical discussion
to follow). We note that at leading order as δ → 0, Eq. (2) is hyperbolic, and the characteristic
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FIG. 2. (a) Numerical solutions, h(θ , t) (solid), of Eq. (2) at dimensionless times t = 0.2 and t = 1 for B = 20, δ = 10−3,
and initial condition h(θ, 0) = 1 + D sin(k∗θ/

√
δ), where k∗ is chosen to produce maximal perturbation growth and

D = 10−2 is a perturbation amplitude. The dotted lines correspond to hflat(θ, t), the solution with D = 0. (b) Measure-
ment of film thickness (re-scaled by hi) as a function of non-dimensional time (re-scaled by μR/(ρgh2

i )) for various values
of B. For B > 8, the maximal thickness is marked by a square.

projections in the (θ , t)-plane indicate that information propagates monotonically towards θ = π

as time increases. We shall then focus on the region near the top of the cylinder (θ = 0), where
the gravitational instabilities are expected to be strongest. We derive an equation that describes the
local behaviour of the film by setting θ = δ1/2x. Keeping only the leading-order terms in Eq. (2) for
δ � 1, we obtain a simplified equation

ht + 1

3

[
h3

(
B−1hxxx + hx + x

)]
x = 0. (3)

Thus, where the destabilizing effect of gravity is expected to be the largest, only one dimensionless
parameter, B, is significant. In the limit of zero surface tension, B → ∞, Eq. (3) has the form of a
backward diffusion equation, which is unconditionally unstable.

With the initial condition h(x, 0) = 1, then for any B, Eq. (3) has a solution h0(T) = T−1/2 where
T = 1 + 2

3 t . This solution corresponds to gravitationally driven drainage with uniform thinning of
the film. It is natural to consider the evolution of small perturbations to this uniform profile by setting
h = h0(T)(1 + εη(x, T)), where ε � 1. From Eq. (3) and at leading order in ε, the perturbed shape,
η(x, T), satisfies

ηT + 1

2T 3/2

(
B−1ηxxxx + ηxx

) + 3

2T

(
xηx + 2

3η
) = 0. (4)

We consider an initial sinusoidal perturbation η(x, 1) = eikx and solve Eq. (4) to find

η(x, T ) = A (k, T ) exp

(
ikx

T 3/2

)
, (5)

A(k, T ) = 1

T
exp

[(
1 − T −7/2

) k2

7
− B−1

(
1 − T −13/2

) k4

13

]
. (6)

For a given initial wave number, k, the amplitude factor A(k, T) dictates the growth or decay of
a perturbation as a function of B and time. A detailed analysis of this function establishes that η

will either decay monotonically, or initially grow and decay afterwards. The initial behavior of the
disturbance is given by

A (k, T ) ∼ 1 + 


2
(T − 1) as T → 1+, (7)

where 
 = k2 − 2 − B−1k4. By examining 
, we see that for B > 8, there exist a band of
wavenumbers

√
2 < k < ∞ such that 
 > 0. It is for these values of B that initial growth of the
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perturbations occurs in Eq. (7); otherwise the perturbations all decay monotonically in time. Thus,
we predict that there is a critical value of the Bond number, which relates the initial film height hi

and the substrate curvature 1/R, such that the Rayleigh-Taylor instability is suppressed. According
to Eq. (6), A(k, T ) ∼ const./T as T → ∞, so eventually all (small) disturbances decay algebraically
regardless of the initial wavenumber k.

In summary, the conclusions of the asymptotic analysis are: (i) any initial disturbance must
immediately decay if B < 8 and (ii) for B > 8, although any disturbance must eventually decay
according to the linearized theory, the initial transient growth may result in an amplification that is
exponentially large in the wavenumber as B → ∞. Also, as B increases, the growth of perturbations
occurs over longer times and for larger wavenumbers k, resulting in a much higher amplitude. It
should be expected that once B is no longer O(1), the linearized analysis breaks down and we
must turn to nonlinear analyses of stability. Next, we present, in turn, experimental and numerical
results.

For the experiments, we use two silicone oils: one with density ρ = 970 kg/m3, surface tension
γ = 18 mN/m, and kinematic viscosity ν = 1000 cS; the other one with density ρ = 950 kg/m3,
surface tension γ = 19 mN/m, and kinematic viscosity ν = 20 cSt. We create substrate curvature by
mechanically fixing two sides of a flexible polycarbonate sheet, as shown in Fig. 1(b). The curvature
is adjusted by precise displacements of two linear stages installed at the edges of the deformable
plate.

To make a uniform thin liquid film, we first coat silicone oil on top of the substrate by using a
spin coater. Then, the liquid film layer is maintained on a horizontal table until the film thickness
is uniform, which is validated by measurements with a confocal laser scanning microscope with
fluorescent dye and an optical interferometry device. The error in the position of the horizontal axis
of the aligned table is less than 0.1◦, which is calibrated by a digital protractor (PRO3600).

When a uniform thin liquid layer is obtained, we impose a curvature to the substrate and turn it
upside down. By varying the initial film thickness, hi, of silicone oil and the curvature (1/R) of the
substrate, we vary the aspect ratio in the range 2 × 10−5 < δ < 2.2 × 10−3 and the modified Bond
number in the range 4 < B < 164.

To measure the evolution of the film thickness, we use an optical interferometry device (Fiber
optic spectrometer, OceanOptics). The device is integrated with a light source (Tungsten halo-
gen lamp, LS-1-LL) and a CCD array-based spectrometer, which measures wavelengths between
200–1100 nm. Due to the refractive index of the film, there is an optical path difference between
the reflected and refracted wavelengths. By Snell’s law, the path difference is ∼=2nfh, where we can
measure the dimensionless film thickness, h(θ , t), and nf is a refractive index of the thin film; in our
set-up the inclination angle of the light source is 90◦ (θ = 0). Also, the refractive index of the silicone
oil is 1.403 and the optical path is calculated by the optical interference pattern that is obtained from
the spectrometer.

We measure the evolution of the film thickness at the center of the geometry (θ = 0), as shown in
the dashed box of Fig. 1(b). Typical measurements of the film thickness h(0, t) for modest values of B
are presented in Fig. 2(b). Based on the theoretical results, we expect that for B < 8, the film thickness
near the top should decrease monotonically; this is demonstrated by, for example, the profile of
B = 7.73 in Fig. 2(b). Indeed, other experimental results with B < 8 confirm similar behaviour:
within this stable regime, the gravitational Rayleigh-Taylor instability is always suppressed due to
the curvature of the substrate.

For values of B > 8, the theory predicts an initial transient growth of perturbations followed by
eventual decay. This, too, is confirmed by the profiles of Fig. 2(b). Within this transient regime, we
observe the formation of small droplets on the free surface, and their motion is followed by observing
the side and top views using DSLR cameras (Nikon D5100 and D90 with AF-S DX Zoom-Nikkor
18-55mm f/3.5-5.6G lens). As shown in the side view of Fig. 3(b) (Multimedia view), the diameter
of the sliding droplet is about 12 mm. These droplets slide in the angular direction, but remain
attached to the interface (i.e., no dripping). Their size can be estimated by balancing surface tension
and gravity, i.e., the typical dimension is 2π

√
2�c where �c = √

γ /ρg is the capillary length. The
sliding sessile droplet size is comparable with the wavelength of the fastest growing mode in the
classical Rayleigh-Taylor instability problem.7
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FIG. 3. (a) Experimental results in the (B, δ)-plane and classified as stable, transient, or unstable. Two critical values of the
Bond number are indicated: B = 8 and B = 80. Experimental images of the side view in the case of (b) transient and (c)
unstable flows. Videos of top and side views of transient flow can be seen in (b) and pinch-off in (c). (Multimedia view)
[URL: http://dx.doi.org/10.1063/1.4876476.1] [URL: http://dx.doi.org/10.1063/1.4876476.2]

If we continue to increase B (B > 80 in the experiments), the thin film will destabilize. As shown
in Fig. 3(c) (Multimedia view), this regime of large values of B is characterized by drops pinching
off from the free surface. The diameter of all droplets is again about 12 mm. We further note that
for B > 15, three dimensional effects were experimentally observed in the form of wave patterns in
the axial direction (z), which can be seen in Fig. 3(b) (Multimedia view).

Thus we see that each experimental result can be classified as stable, transient, or unstable,
and this is summarized in the (B, δ) phase plane shown in Fig. 3(a). We further note the B = O(1)
transition between curvature-stabilized dynamics and the classical Rayleigh-Taylor instability can
be observed by balancing the time scale for drainage of the thin film, O(μR/(ρgh2

i )), with the time
scale for growth of the Rayleigh-Taylor instability, which is O(μγ/[(ρg)2h3

i ]) (de Gennes et al.,21

p. 117).
We now seek to compare the asymptotic and experimental results to the numerical solutions of

the full thin film problem in Eq. (2). This full problem is solved using finite differences beginning
from an initial condition h(θ, 0) = 1 + D sin(k∗θ/

√
δ) and solved over 0 ≤ θ ≤ π , imposing

symmetry conditions at θ = 0, π . For B ≥ 8, we choose k∗ to be the wavenumber in Eq. (5) that
produces maximal growth, where ∂kA = 0 = ∂TA; for B < 8, we choose k∗ = 2 (its value at B = 8).
We note that although the initial condition may not be symmetric at θ = π , the hyperbolic nature of
Eq. (2) ensures that the symmetry is imposed for t > 0 in a stable manner.

We then compute the difference

H (θ, t) = 1

D
[h(θ, t) − hflat(θ, t)], (8)

where hflat is the solution of Eq. (2) with an initial condition with no perturbation, D = 0. Numerical
profiles of h(θ , t) and hflat(θ, t) are shown in Fig. 2(a), and the corresponding differences, H(θ , t) are
shown in Fig. 4. We see the decay of the initial sinusoidal perturbation (Fig. 4(a)) as the waves are
advected towards the bottom of the cylinder (Fig. 4(b)).

To measure the magnitude of the perturbations over the upper half of the cylinder, for each choice
of D, k∗, B, and δ, we use two measures: (i) the maximal perturbation, ηmax(t) ≡ maxθ≤π/2 H (θ, t),
or (ii) the average amplitude, ηavg(t), of the oscillations in H for θ ≤ π /2. The maximal values
of ηmax(t) or ηavg(t) over all time are computed and compared with the maximal value of A(k∗, t)
over all time. The results are shown in Fig. 5, and demonstrate that the asymptotic prediction of
Eq. (6) lies between the two measures of perturbation instability (for δ = 10−3 and D = 10−2).
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FIG. 4. Plots of H (θ, t) = 1
D [h(θ, t) − hflat(θ, t)] from Eq. (8) at times (a) t = 0 and (b) t = 1, showing the evolution of

an initial sinusoidal disturbance on a thin film in a circular cylinder. The parameters are B = 20 and δ = 10−3, with initial
condition h(θ, 0) = 1 + D sin(k∗θ/

√
δ) (same as Fig. 2(a)). The radial scaling of the two profiles has been exaggerated.

The numerical results agree favourably with the experimental measurements. The critical value of
B = 8 can be identified clearly in asymptotic, numerical, and experimental results.

In summary, we have studied the gravitational Rayleigh-Taylor instability for a liquid film
under a curved substrate. Using theoretical and experimental approaches, we identified two critical
conditions to separate different flow regimes, and documented how a geometric feature, the substrate
curvature, can suppress the Rayleigh-Taylor instability. Of course, there are other ways to suppress
this instability, e.g., different external effects such as temperature gradients,22 applied electric fields,23

and mechanical forces.24

In addition to incorporating additional physics, we emphasize that the theoretical scope of this
paper is only focused on linearized stability. Indeed, the transient growth observed for B > 8 may
cause a sufficiently large perturbation of the free surface to trigger (nonlinear) instability. A weakly
nonlinear analysis in such cases would then be needed to bridge the complex dynamics observed in
the experiments and the numerics of Eq. (1).

It is also possible to extend our results to three-dimensional flow situations. For example,
we would expect that for three-dimensional substrates where the local curvature is parabolic, the
Rayleigh-Taylor instability is suppressed. However, nonlocal curvature gradients and other effects
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δ = 10−3, D = 10−2, and k = k∗. The asymptotically predicted max t ≥ 0A(k∗, t) (thick line) lies between the two numerical
results. The experimental results (squares) measure the maximum value of h(0, t)/h(0, 0) (see Fig. 2).
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of non-axisymmetric topographies (e.g., imposing inlet or outlet conditions for the draining process)
may change the flow characteristics. These more general three-dimensional aspects are the subject
of ongoing investigations.

We thank R. Goldston, M. Jaworski, R. Kaita, B. Koel, R. Majeski, and C. Skinner for helpful
conversations about liquid walls as plasma-facing components, and also I. Jacobi for helping in the
film thickness measurements. The DOE Fusion Energy Sciences Program is thanked for support of
this research via Grant No. DE-SC0008598 to H.A.S. Finally, we gratefully acknowledge the Oxford-
Princeton Collaborative Workshop Initiative for providing an opportunity for this collaborative work.
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