
Exponential Asymptotics and Stokes Line
Smoothing for Generalized Solitary Waves

Philippe H. Trinh

University of Oxford, UK

Abstract In another paper of this volume, Grimshaw has demon-

strated how techniques of Borel summation can be used to elucidate

the exponentially small terms that lie hidden beyond all orders of

a divergent asymptotic expansion. Here, we provide an alterna-

tive derivation of the generalized solitary waves of the fifth-order

Korteweg-de Vries equation. We will first optimally truncate the

asymptotic series, and then smooth the Stokes line. Our method

provides an explicit view of the switching-on mechanism, and thus

increased understanding of the Stokes Phenomenon.

1 Introduction

The Stokes Phenomenon describes the puzzling event in which exponen-
tially small terms can suddenly appear or disappear when an asymptotic
expansion is analytically continued across key lines (Stokes lines) in the
Argand plane—“as it were into a mist,” Stokes once remarked in 1902.

Fortunately, much of the inherent vagueness of this phenomenon, as well
as its deep implications for the study of asymptotic approximations has been
examined since Stokes’ time (see Boyd (1999) for a comprehensive review).
In another paper of this volume by Grimshaw—henceforth referred to as
[Grimshaw]—it was shown how Borel summation can be used to reveal
the exponentially small waves found in the fifth-order Korteweg-de Vries
equation (5KdV).

In this review paper, we will show how the methodology outlined in
Olde Daalhuis et al. (1995) and Chapman et al. (1998) can be used as an
alternative treatment of the 5KdV equation. The procedure is as follows:
(1) Expand the solution as a typical asymptotic expansion, (2) find the
behaviour of the late-order terms (n → ∞), and (3) optimally truncate the
expansion and examine the remainder as the Stokes lines are crossed.

The location of the Stokes lines, as well as the details of the Stokes
Phenomenon and resultant exponentials are intrinsically linked to the late-
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order terms of the asymptotic approximation—thus, as we proceed through
Steps 1 to 3, we are effectively deriving the beyond-all-orders contributions
by decoding the divergent tails of the expansion. The novelty in this ap-
proach (in contrast to the one shown in [Grimshaw]) is that all the analysis is
done in the (complexified) physical space, rather than in Borel-transformed
space. This provides us with a special vantage point—to see the smooth
switching-on of the exponentially small terms as each Stokes line is crossed
(see Figure 1). Come, let us stare into Stokes’ mist.
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Figure 1. The analytic continuation of the traditional asymptotic solution
(the classical solitary wave) contains singularities up and down the imagi-
nary axis, with Stokes lines emanating from each of these singularities. By
re-scaling near the singularities and optimally truncating, we will be able to
observe the smooth switching-on of the exponentially small terms (top-left).

2 Generalized Solitary Waves and the 5KdV

We will consider the existence of solutions to the 5KdV equation,

ǫ2uxxxx + uxx + 3u2 − cu = 0 (1)

with u → 0 as x → ±∞. Although the problem is for x ∈ R, it will be
important to consider the effects of allowing u and x to be complex.
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2.1 Initial Asymptotic Analysis and Late Terms

We begin as usual by substituting the asymptotic expansions,

u =

∞
∑

n=0

ǫ2nun and c =

∞
∑

n=0

ǫ2ncn

into Equation (1). This yields the first two orders as,

u0 = 2γ2sech2(γx) c0 = 4γ2 (2)

u1 = −10γ2u0 +

(

15

2

)

u2
0 c1 = c2

0 (3)

while at O(ǫ2n),

u(n−1)xxxx + unxx + 6u0un − c0un + . . . = 0. (4)

Here, the key observation is that there exists singularities in the analytic
continuation of the leading order solution, u0(x) at x = ±πi/2γ,±3πi/2γ, . . .
This use of ill-defined approximations in order to represent perfectly well-
defined phenomena is one of the caveats of singular asymptotics, but one
would feverishly hope that a singularity far from the region of interest (in
this case, x ∈ R) has little effect on the approximations!

Unfortunately this is not the case. We see from Equation (4) that at each
order, un is partly determined by differentiating un−1 twice and thus each
additional order adds to the power of the singularities in the early terms.
We would therefore expect the late terms of the asymptotic expansion to
exhibit factorial over power divergence of the form,

un ∼ Q(z)Γ(2n + γ)

[χ(z)]2n+γ
, as n → ∞. (5)

Here, γ is a constant, while Q(z) and χ(z) are functions to be determined.
Substituting this ansatz into Equation (4) yields at leading order,

−
(

dχ

dz

)4

+

(

dχ

dz

)2

= 0, as n → ∞. (6)

Now from the above discussion, we would expect that χ = 0 at the relevant
singularities, x = σi for some i; we then conclude that χ′ = ±1 and thus
without loss of generality, χ = x − σi. In general, un will be a sum of
terms of the form (5), one for each singularity. However along the real
axis, the behaviour of un will be dominated by those singularities closest to
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the axis and thus we need only concern ourselves with the singularities at
x = ±σ ≡ ±iπ/2γ. Finally, at next order as n → ∞, we find that Q(z) = Λ,
a constant.

The determination of γ, Λ, and in fact, the Stokes line smoothing in
the next section will require an analysis near each of the two singularities,
x = ±σ; for brevity, we will henceforth focus on the singularity at x = σ in
the upper-half plane.

First, since by Equation (2), u0 ∼ −2/(x − σ)2 as x → σ, we must
require that γ = 2. Second, in order to determine the final constant Λ, we
need to re-scale near the singularity x = σ, express the leading-order inner
solution as a power series (in inner coordinates) and match with the outer
solutions. In the end, however, Λ is determined by the numerical solution
of a canonical inner problem. As was shown in [Grimshaw], Λ ≈ −19.97.

Finally, let us discuss the significance of χ. Following Dingle (1973), we
expect there to be a Stokes line wherever un and un+1 have the same phase
as n → ∞, or in this case where,

ℑ
[

−χ2
]

= 0 and ℜ
[

−χ2
]

≥ 0. (7)

Thus there exist Stokes lines from x = πi/2γ down the imaginary axis and
from x = −πi/2γ up the imaginary axis (as illustrated in Figure 1). In
the next section, we will optimally truncate the asymptotic expansion and
examine the switching-on of exponentially small terms as these two Stokes
lines are crossed.

2.2 Optimal Truncation and Stokes Smoothing

By now we have entirely determined the late terms of the asymptotic ex-
pansion. In order to identify the exponentially small waves, we truncate the
expansion and study its remainder,

u =

N−1
∑

n=0

ǫ2nun + RN (x).

Substitution into Equation (1) yields the equation

ǫ2R′′′′
N + R′′

N + 6u0RN − c0RN + . . . ∼ ǫ2Nu′′
N , (8)

which, using Stirling’s formula, we can write the right-hand side as
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ǫ2Nu′′
N ∼ ǫ2N Λ(−1)NΓ(2N + γ + 2)χ′

χ2N+γ+2

∼ ǫ2N Λ(−1)N
{√

2πe−(2N+γ+2)(2N + γ + 2)2N+γ+3/2
}

χ2N+γ+2
(9)

We can see now that the remainder is only algebraically small unless N ∼
|χ|/2ǫ (where the ratio of consecutive terms are equal) and thus we set
N = r/2ǫ + ρ where ρ is bounded as ǫ → 0.

Although there are four homogeneous solutions to Equation (8) as ǫ → 0,
we will show that one in particular,

RN (x) ∼ S(x)e−(x−σ)/ǫ (10)

is switched on as the Stokes line is crossed. We will call the function S(x)
the Stokes multiplier, and we expect it to vary smoothly from one constant
to another across the Stokes line. We write

χ = x − σ = reiθ and
d

dx
= − ie−iθ

r

d

dθ
, (11)

where now, since N is fixed (and thus also the modulus, r), we are only
interested in the “fast” variation in θ across the Stokes line. Then using
Equations (9) and (11) in (8) gives

dS

dθ
∼ Λ

√
rπ√

2ǫγ+1/2
e−r/ǫeireiθ/ǫ

(

e−iθ
)r/ǫ+2ρ+γ+2(

e−πi/2
)r/ǫ+2ρ

eiθ

=
Λ
√

rπ√
2ǫγ+1/2

× exp

[

−r

ǫ

{

1 − ieiθ + iθ +
πi

2

}

+i
{

−2ρ
(

θ +
π

2

)

− θ(γ + 1)
}]

(12)

From the terms within the curly braces, we see that the change in S is
exponentially small, except near the Stokes line θ = −π/2. Here, we will
re-scale θ = −π/2 +

√
ǫη and integrate Equation (12) from left (η → −∞)

to right to show that

S ∼ const +
Λ
√

π√
2ǫγ

eπi(γ+1)/2

∫

√
rη

−∞
e−s2/2 ds. (13)

This integral (the error function) precisely illustrates the smoothing of the
Stokes line in Figure 1. Thus the jump in the Stokes multiplier and conse-
quently, the remainder is
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[

S
]

Stokes
∼ Λπ

ǫγ
e3πi/2 =⇒

[

RN

]

Stokes
∼ Λπ

ǫ2
e3πi/2e−i(x−σ)/ǫ. (14)

We must remember that the analysis must be repeated for analytic continua-
tion into the lower-half x-plane and thus near the singularity at x = −πi/2γ.
The result is another exponentially small contribution which is the complex
conjugate of Equation (14) and thus the sum of contributions from crossing
the pair of Stokes lines is,

uexp ∼ −2Λπ

ǫ2
e−π/2γǫ sin (x/ǫ) . (15)

Let us recap our analysis: (1) The singular nature of the 5KdV equation
produces singularities in the early terms, (2) As more and more terms are
taken, the effects of the singularities grow, eventually producing factorial
over power divergence in the late terms, (3) Stokes lines emerge from each
of the singularities, and (4) By optimally truncation and examining the
jump in the remainder as the Stokes lines are crossed, we see the Stokes
Phenomenon and thus the appearance of exponentially small terms.

So finally, we are ready to answer the original question: Do there exist
classical solitary wave solutions of the 5KdV equation? No. For suppose
that we did impose the condition that only the base (non-oscillatory) asymp-
totic solution applies at x = −∞. Then as we pass through x = 0, the term
in Equation (15) necessarily switches on and u ∼ u0 + uexp for x > 0.

We have thus passed through Stokes’ mist and subsequently, realized
that there do not exist classical solitary wave solutions of the 5KdV.
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