[MA20223 Vectors & PDEs] Exam study guide *Topic 1*							Last edited:
							29 Mar 2019
	Topic 1	Vector Calculus		Driarity, All material an un			
	Topic 2	Fourier Series		otherwise explicitly noted	d). All such concepts have a min. priority rating of 1.		
	Topic 3	PDEs			,		
Topic	Туре	Can you	Priority	Workbook chapter	Comment		
		Cha	pter 1: The first o	ne			
1	Derivation	Derive the transport equation	1	1	Not examinable though related to later discussion of deriving PDEs		
		Chapter 2: Re	view on multivaria	able calculus			
1	Result	Explain the connections between normal vectors and gradients?	2	2			
1	Definition	Define conservative field and potential	3	2			
1	Method	Perform vector proofs with index notation	1	2	Index notation not examinable but can be used on exam to speed up any necessary proofs		
		Chaj	oter 3: Line integr	als			
1	Definition	Define the vector equation of a curve; the tangent vector	3	3			
1	Definition	Define arclength in terms of a line integral	3	3			
1	Method	Parameterise different curves in 2D and 3D	3	3	Examples include: circles, $y = f(x)$, ellipses, etc.		
1	Definition	Define the line integral of a scalar field	3	3			
1	Definition	Define work integral	3	3			
1	Method	Compute different line and work integrals	3	3	PS1, Q1, Q5		
1	Proof	Interpret the line and work integrals in terms of infinitessimal elements and forces	2	3	Related to the beginning lecture discussions; review notes and videos		
		Chapte	er 4: The Big The	orem			
1	Discussion	Explain the intuition behind path independence of work integrals using the notion of gravity	1	4			
1	Theorem	State and prove FTC for work integrals	2	4			
1	Theorem	State and prove the big theorem on conservative forces	3	4	Theorem 4.3; PS1 Q4		
1	Result	Explain why the simply-connected requirement is important in the definition of a conservative field	2	4	PS1, Q3		
1	Result	Show that the work integral for a particle moving under F equals the change in kinetic energy	1	4	Example 4.4		
		Chapter 5:	Surface paramet	erisation			
1	Method	Compute explicit, implicit, and parametric representations of surfaces	3	5	Standard surfaces include: sphere, paraboloid, cylinder, cube, etc.; many examples, including PS2-4		
1	Result	State the vector equation and normal to a plane	2	5	Lemma 5.3		
1	Theorem	State and prove the formulae for the normal to a general surface (explicit and implicit)	2	5	Lemma 5.4		
1	Method	Compute the normal to various surfaces	2	5			
Chapter 6: Surface and flux integrals							
1	Starter discussion	Discuss why the surface integral formula is as it is (in terms of surface patches of area dS)	2	6	Starter discussion; PS2 Q6		
1	Theorem	State the definition of a surface integral in terms of the explicit representation	3	6	Theorem 6.2; you should know the broad outlines of how it is proved.		
1	Discussion	Explain what the connection is between the surface element dS and the Jacobian	1	6	Remark 6.3		
1	Method	Compute various scalar surface integrals	2	6	E.g. Example 6.4 and problem sets		
1	Definition	Define the flux integral	3	6	Definition 6.6		

[MA20223 Vectors & PDEs] Exam study guide *Topic 1*							Last edited:	
							29 Mar 2019	
	Topic 1	Vector Calculus		Priority: All material on workbooks and in problem sets are examinable (except otherwise explicitly rated). All such concepts have a min_priority ratios of 1				
	Topic 2	Fourier Series						
	Topic 3	PDEs		earler mee explicitly neter				
Topic	Туре	Can you	Priority	Workbook chapter	Comment			
1	Discussion	Interpret the flux integral in terms of flow through a surface	1	6	Lemma 6.8			
1	Method	Compute flux integrals over different fields and surfaces	2	6	E.g. Example 6.7 and problem sets			
1	Method	Derive different expressions for dS (dependent on chosen parameterisation)	2	6	PS2, Q2			
		Chapter	7: Divergence a	nd curl				
1	Definition	Define divergence and curl	3	7				
1	Definition	Define irrotational and incompressible	1	7				
1	Definition	Define the Laplace operator	3	7				
1	Method	Prove and compute various vector identites	2	7	PS3 Q2, Q4, Q5			
Chapter 8: Divergence and Green's theorem								
1	Starter discussion	Explain the intuition of the proof of the divergence theorem	1	8	This was done by explaining how to split the surface into little cuboids and calculating the flux through each cuboid			
1	Theorem	State the divergence theorem	3	8				
1	Method	Apply the divergence theorem	3	8	Typical examples are "Verify the divergence theorem" types			
1	Definition	Define the positive orientation of a curve	2	8	Definition 8.8			
1	Theorem	State and prove the Stokes' theorem form of Green's theorem	2	8	Theorem 8.11; you do not have to state or prove the divergence form (Theorem 8.10)			
1	Method	Apply Green's theorem to compute various quantities	2	8 E.g. Corollary 8.13 and problem sets				
		Chapt	er 9: Stokes' theo	prem				
1	Starter discussion	Explain the basic idea of why Stokes' theorem is true	1	9	This was difficult!			
1	Definition	Define what it means for a curve and surface to be "correspondingly orientated"	3	9				
1	Theorem	State Stokes' theorem	3	9				
1	Method	Apply Stokes' theorem	3	9	Lots of examples and problem sets			
1	Theorem	Relate Stokes' theorem to conservative fields and irrotational forces	2	9	Theorem 9.3			
Problem sets								
1	Problem set 1: line integrals and conservative fields				Q1-5 relevant; Q6 can be used to teach yourself index notation (it helps, but not needed)			
1	Problem set 2: surfaces and surface integrals				Everything relevant			
1	Problem set 3: divergence, curl, and divergence theorem				Everything relevant			
1	Problem set 4: Green's theorem and Stokes' theorem				Everything relevant			

[MA20223 Vectors & PDEs] Exam study guide *Topic 2*						Last edited:	
						2 Apr 2019	
	Topic 1	Vector Calculus		Priority:	All material on workbooks and in problem sets are		
	Topic 2	Fourier Series		exami	nable (except otherwise explicitly noted). All such		
	Topic 3	PDEs			concepts have a min. priority rating of 1.		
Topic	Туре	Can you	Priority	Chap.	Comment		
		Chapter 10: Intro	duction to PDEs				
3				10	Part of Topic 3		
		Chapter 11: Introduct	ion to Fourier serie	es			
2	Starter discussion	Explain the basic idea of Fourier series	1	11			
2	Definition	Define the notion of a periodic extension; construct the periodic extension of a function.	2	11	This is done moreso by example; see Fig. 11.1 in the notes		
2	Definition	Define even/odd functions	2	11			
2	Theorem	State/Prove the orthogonality properties of sines and cosines.	2	11	This is Lemma 11.8. You do not have to memorize product formulae (11.9).		
2	Theorem	State/Prove the Fourier series formulae, including the coefficients an and bn, for a function defined on [-pi, pi].	3	11	This is Theorem 11.9. You should be able to prove this knowing Lemma 11.8.		
2	Theorem	State/prove the expansion of f into a cosine or sine series.	3	11	This is Lemma 11.11.		
2	Method	Find the Fourier series of various functions on [-pi, pi].	3	11	See problem sets and examples in lectures.		
2	Method	Use Fourier series to establish formulae for infinite series.	2	11	Problem set questions		
	Chapter 12: on Fourier convergence						
2	Starter discussion	Explain what "modes" and "spectrum" means; explain why convergence is a tricky aspect of Fourier series	1	12			
2	Method	Calculate the Fourier series of the square wave	3	12	Example 12.1		
2	Remark	Discuss the Gibbs Phenomenon; discuss the nature of Fourier convergence	2	12	See end of chap. calculation of the Gibbs "overshoot"		
2	Theorem	State the Fourier convergence theorem	3	12	Theorem 12.5		
2	Theorem	State/prove Fourier series formulae for the case of extension from [-L, L].	3	12	Theorem 12.7		
2	Definition	Define the even and odd periodic extension	3	12	Definition 12.9		
2	Method	Given a function on [0, L], draw the periodic odd/even extension of that function.	3	12			
2	Method	Calculate the Fourier series for periodic extensions for f given from [0, 2L] or [-L, L]. Calculate Fourier series for even or odd extensions	3	12	Practice! Study all the basic examples like Fourier series of lines, parabolas, exponentials, constant functions, etc.		
Chapter 13: maths of music							
2					Not examinable! Chapter just for your enjoyment and appreciation of Fourier series		
Problem sets							
3	Problem set 5: introduction to PDEs				Part of Topic 3		
2	Problem set 6: Fourier series I				Everything relevant		
2	Problem set 7: Fourier series II				Everything relevant with exception of Q4 (priority 1)		

[MA20223 Vectors & PDEs] Exam study guide *Topic 3*									
						16 Apr 2019			
	Topic 1	Vector Calculus							
	Topic 2	Fourier Series		Priority: All material on workbooks and in problem sets are examinable (except					
	Topic 3	PDEs		otherwise explicitly hoted	J. All such concepts have a min. phonty rating of 1.				
Topic	Туре	Can you	Priority	Workbook chapter	Comment				
	Chapter 10: Introduction to PDEs								
3	Lemma	State the "bump" lemma, Lemma 10.1	1	10	You will not have to formally state this, nor prove it. But it is used everywhere in the all the derivation of the PDE models.				
3	Proof	Derive the heat equation from physical principles in 1D	3	10					
3	Proof	Derive the wave equation from physical principles in 1D	3	10					
3	Proof	Derive the heat equation from physical principles in 3D	3	10					
		Chapter	14: Terminology o	of PDEs					
3	Definition	Define a Dirichlet condition in 1D/3D	2	14					
3	Definition	Define a Neumann condition in 1D/3D	2	14	This is largely subsumed by applications in Chaps.				
3	Definition	Define a Neumann condition in 1D/3D	2	14					
		Chapter 15: Separat	ion of variables fo	r the heat equation					
3	Method	Solve heat equation in 1D with zero [D] BCs	3	15					
3	Method	As above with zero [N] BCs	3	15					
3	Method	Solve for the steady-state heat equation in 1D	3	15					
3	Remark	Know what thermally insulated boundary conditions mean	3	15					
		Chapter 16: Separati	ion of variables fo	r the wave equation					
3	Method	Solve the wave equation in 1D with zero [D] BCs	3	16					
3	Method	As above with zero [N] BCs	3	16					
3	Remark	Plot individual modes for the wave equation	1	16	Example 16.2				
		Chapter 17: Separati	on of variables for	r Laplace's equation					
			Not examinable						
A word abo	out this chapt	er: this chapter was removed from lectures and we covered a PS8, Q4. This material allows you to link up	solution of the st with past exams,	eady-state heat equation in a but it will not be examinable	disc at the end of Chap. 15. This was done as well in in 2018-2019.				
		Chapter	18: d'Alembert's f	formula					
3	Theorem	Show that the solution of the wave equation can be written as left and right-travelling waves	3	18	Theorem 18.1				
3	Theorem	Prove d'Alembert's formula	3	18	Theorem 18.3				
3	Method	Plot profiles of $u(x,t)$ using d'Alembert's formula in the case $g(s) = 0$ by interpreting as left and right-travelling waves	3	18	Study the example on p. 180 of scanned notes; see 2017-2018 exam last question				
		Cha	pter 19: Uniquene	ess					
3	Proof	Prove uniqueness for heat/wave/Poisson's equation in 1D with [D, N, M] conditions	3	19					
3	Proof	Same as above with 3D	3	19	All done PS10				
	Problem sets								
3 Problem set 5: introduction to PDEs Priority 3: Q1-3 Priority 2: Q4									
3	Problem set 8: Heat equation				Priority 3: Q1 Priority 2: Q2, 3 Q4 can be ignored				
3	Problem set 9: Wave equation				Priority 3: Q1, Q3 Priority 2: Q2 Priority 1: Q4				
3		Problem set 10: Uniqueness			Everything Priority 3				