====== Lecture 24: Computation of the heat equation III ======
====== Example 15.4: Solution of the inhomogeneous Dirichlet problem ======
This lecture starts off with Example 15.4 from the notes, where we look to solve
$$
\begin{gathered}
u_t = u_{xx} \\
u(0, t) = 2, \qquad u(\pi, t) = 1 \\
u(x, 0) = 0.
\end{gathered}
$$
We show that the solution is given by
$$
u(x, t) = U(x) + \sum_{n=1}^\infty B_n \sin(nx) \mathrm{e}^{-n^2 t}
$$
where we have found the steady-state solution
$$
U(x) = 2 - \frac{x}{\pi},
$$
as well as the coefficients
$$
B_n = \frac{2}{n\pi}[(-1)^n - 2].
$$
We also illustrated the solution using the code:
%% Plot the Fourier series for Example 15.4
% Written for MA20223 Vectors & PDEs 2019-20
clear % Clear all variables
close all % Close all windows
N = 100; % How many Fourier modes to include?
R = @(n, t, x) 2/(n*pi)*((-1)^n - 2)*exp(-n^2*t)*sin(n*x);
% Create a mesh of points between two limits
x0 = pi; x = linspace(0, x0, 1000);
% Create a mesh of points in time
t = linspace(0, 5, 200);
figure(1); % Open the figure
plot(x, 2 - x/pi, 'b', 'LineWidth', 2); % Plot the base function
ylim([-0.2,2]); % Set the y limits
xlim([0, x0]); % Set the x limits
xlabel('x'); ylabel('u(x,t)');
hold on
for j = 1:length(t)
tj = t(j);
u = (2 - x/pi);
for n = 1:N
u = u + R(n, tj, x);
end
if j == 1
p = plot(x, u, 'r');
else
set(p, 'YData', u);
end
drawnow
title(['t = ', num2str(tj)]);
pause(0.1);
if j == 1
pause
end
end
===== Problem set 8 Q1 =====
The next thing we studied was PS8, Q1, which is the solution of the homogeneous Neumann problem for the heat equation.
%% Plot the Fourier series for a made-up modification of PS8 Q1.
% Written for MA20223 Vectors & PDEs
clear % Clear all variables
close all % Close all windows
N = 20; % How many Fourier modes to include?
% Define an in-line function that takes in three inputs:
R = @(n, t, x) 4*(-1)^n/n^2*cos(n*x)*exp(-n^2*t);
% Create a mesh of points between two limits
x0 = pi;
x = linspace(0, x0, 1000);
% Create a mesh of points in time
t = linspace(0, 5, 200);
figure(1); % Open the figure
plot(x, x.^2, 'b', 'LineWidth', 2); % Plot the base function
ylim([-0.2,pi^2]); % Set the y limits
xlim([0, x0]); % Set the x limits
xlabel('x'); ylabel('u(x,t)');
hold on
for j = 1:length(t)
tj = t(j);
u = 1/2*(2*pi^2/3);
for n = 1:N
u = u + R(n, tj, x);
end
if j == 1
p = plot(x, x.^2, 'r');
else
set(p, 'YData', u);
end
drawnow
title(['t = ', num2str(tj)]);
pause(0.1);
if j == 1
pause
end
end